• Title/Summary/Keyword: Machine oil

Search Result 413, Processing Time 0.032 seconds

A Study on Control of the Thermal Expansion for Ball Screw of CNC Machin Tools (CNC 공작기계용 볼스크류의 열팽창 억제에 관한 연구)

  • 전언찬
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.73-78
    • /
    • 1998
  • In this paper, we have studied about the thermal expansion of the ball screw used for the CNC machine tools. The hollow ball type is used for the ball screw. We have compared the conventional cooling system and function with the improved cooling system and function which is developed the path providing cooling oil in hollow ball screw. That is the temperature variation and positioning accuracy are analyzed of the ball screw. We have obtained the following results through this experiment. 1) The improved cooling system of the hollow ball screw for CNC machine tools was developed 2) The improved cooling system of the hollow ball screw has a large effectiveness on restraining the thermal expansion of the ball screw. 3) The positioning accuracy of the ball screw was improved about 2~4$\mu$m using temperature -controlled cooling oil.

A Study on Recognition of Friction Condition for Hydraulic Driving Members using Neural Network

  • Park, Heung-Sik;Seo, Young-Baek;Kim, Dong-Ho;Kang, In-Hyuk
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • It can be effective on failure diagnosis of oil-lubricated tribological system to analyze operating conditions with morphological characteristics of wear debris in a lubricated machine. And it can be recognized that results are processed threshold images of wear debris. But it is needed to analyse and identify a morphology of wear debris in order to predict and estimate a operating condition of the lubricated machine. If the morphological characteristics of wear debris are identified by the computer image analysis and the neural network, it is possible to recognize the friction condition. In this study, wear debris in the lubricating oil are extracted from membrane filter (0.45 ${\mu}m$) and the quantitative value fur shape parameters of wear debris was calculated through the computer image processing. Four shape parameters were investigated and friction condition was recognized very well by the neural network.

Pattern Recognition of Rotor Fault Signal Using Bidden Markov Model (은닉 마르코프 모형을 이용한 회전체 결함신호의 패턴 인식)

  • Lee, Jong-Min;Kim, Seung-Jong;Hwang, Yo-Ha;Song, Chang-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1864-1872
    • /
    • 2003
  • Hidden Markov Model(HMM) has been widely used in speech recognition, however, its use in machine condition monitoring has been very limited despite its good potential. In this paper, HMM is used to recognize rotor fault pattern. First, we set up rotor kit under unbalance and oil whirl conditions. Time signals of two failure conditions were sampled and translated to auto power spectrums. Using filter bank, feature vectors were calculated from these auto power spectrums. Next, continuous HMM and discrete HMM were trained with scaled forward/backward variables and diagonal covariance matrix. Finally, each HMM was applied to all sampled data to prove fault recognition ability. It was found that HMM has good recognition ability despite of small number of training data set in rotor fault pattern recognition.

Characteristics of shaft Vibration due to Rubbing in the Steam Turbines (증기 터빈에서의 고체 마찰에 의한 축 진동 특성)

  • 하현천;최성필
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.179-183
    • /
    • 1999
  • Rubbing occurs when a rotating element comes in contact with a stationary element. In the steam turbines, the rotating element is the rotor while the stationary elements are usually the oil deflectors and packing seals. Rubbing phenomenon may be often obseued on a new or rebuilt machine rather than on a machine that has been operating for several months or years. Rubbing in the turbine has been classified into two modes by the operating conditions: 1) start up or shut down, 2) steady state. At start up or shut down operation, rubbing produces synchronous whirl vibration, which are caused by thermal bow of the shaft due to localized heating on the shaft surface. While subsynchronous whirl vibration is caused by partial rubbing during the steady state operation. In this paper, the two case studies of troubleshooting for excessive vibration caused by rubbing in the actual steam turbines are investigated.

  • PDF

A Study on Recognition of Operating Condition for Hydraulic Driving Members (유압구동 부재의 작동조건 식별에 관한 연구)

  • 조연상;류미라;김동호;박흥식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.136-142
    • /
    • 2003
  • The morphological analysis of wear debris can provide early a failure diagnosis in lubricated moving system. It can be effective to analyze operating conditions of oil-lubricated tribological system with shape characteristics of wear debris in a lubricant. But, in order to predict and recognize an operating condition of lubricated machine, it is needed to analyze and to identify shape characteristics of wear debris. Therefore, If the morphological characteristics of wear debris are recognized by computer image analysis using the neural network algorithm, it is possible to recognize operating condition of hydraulic driving members. In this study, wear debris in the lubricating oil are extracted by membrane filter (0.45 ${\mu}{\textrm}{m}$), and the quantitative values of shape parameters of wear debris are calculated by the digital image processing. This shape parameters are studied and identified by the artificial neural network algorithm. The result of study could be applied to prediction and to recognition of the operating condition of hydraulic driving members in lubricated machine systems.

A Study on the Determination of the Oil Gap in the Hydrostatic Spindle System for a Crank Shaft Grinding Machine (크랭크 샤프트 연삭기용 유정압 스핀들의 유막 간격 선정에 관한 연구)

  • Park, Dong-Keun;Choi, Chi-Hyuk;Lee, In-Jae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-415
    • /
    • 2011
  • A cylindrical type of self-controlled restrictor is designed for hydrostatic bearing of crank shaft for a grinding wheel spindle. The effect of operation parameters, clearance between spindle and housing on bearing stiffness are analyzed to determine the optimum conditions of operation parameters. The lowest values of the supply pressure and the loads by the theoretical and experimental results assuming oil film thickness and shape of pocket are compared.

Oil Cooler Design Automation on the Cooling of Machine Tool Cutting Oil (공작기계 절삭유 냉각용 오일쿨러 설계 자동화)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The automatic design of shell & tube type oil cooler can be used in real industrial environments. Since the automatic design system is intended to be used in small companies, it is designed to be operated well under environments of CAD package in the personal computer. It has adopted GUI in design system, and has employed DCl language. Design parameters to be considered in the design stage of shell and tube type oil cooler are type of oil cooler, outer diameter, thickness, length of tube, tube arrangement, tube pitch, flow rate, inlet and outlet temperature, physical properties, premissive pressure loss on both sides, type of baffle plate, baffle plate cutting ratio, clearance between baffle plate outer diameter and shell inner diameter and clearance between baffle plate holes. As a result, the automatic design system of shell & tube type oil cooler is constructed by the environment of CAD software using LISP. We have built database of design data for various kinds of shell & tube type oil coolers. The automatic design system have been assessed and compared with existing specification of design. Good agreement with Handbook of heat exchanger and design dta of real industrial environments has been found.

  • PDF

A Study on the Oil-Controlling Adapter of Power Take-Off for Armored Recovery Vehicles (구난장갑차 동력인출장치의 오일조절용 어댑터 개발)

  • Park, Kyung-Chul;Shin, Hun-Yong;Lee, Chang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2016
  • When rotating the clutch drum in the power take-off (PTO) gear box of an armored recovery vehicle, lots of inner oil is drained through the adapter by centrifugal force. Therefore, a lack of lubrication is caused by inner oil loss, and the bearing is damaged by overheating. This study, therefore, aims to design an oil-controlling adapter by using shape alteration to prevent oil loss. Both the original and improved adapters were tested at 1,800rpm by using an operational test machine. When applying the original adapter to the gear box, the bearing was damaged by overheating, which was caused by the lack of lubrication. When applying the improved oil-controlling adapter, on the other hand, it prevented the loss of inner oil. Applying the improved adapter is expected to prevent the overheating caused by lack of lubrication.

A study on the Stick-slip Characteristic of Machine Tool Feeding System. (공작기계 이송계의 Stick-Slip 특성에 관한 연구)

  • Park, Jong-Gwon;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.29-35
    • /
    • 1988
  • When low sliding velocities in the boundary lubrication range are operating, irregular movements frequently occur which are a result of the stick-slip phenomenon. Such slide motions are undesirable in precision machine tools, particularly with feed back systems used in numerical and adaptive control machine tools. Accordingly, this paper reports analytical and experimental studies in the stick-slip characteristic of machine tool feeding system. The main conclusions of this study are as follows; The tendency towards stick-slip effects may be reduced by; 1). Reducing the drop in friction coefficient in the Stribeck curve(on the rising part of the friction characteristic at higher sliding speeds, the system is stable all the time) 2). Reducing the transition velocity by the use of a higher viscosity lubricating oil. 3). Increasing the stiffness(Damping)and reducing normal load(Sliding mass) Therefore, the Critical velocity is decided from the above conclusions and in designing of machine tool, feed rates(sliding velocity)must be design the more than critical velocity.

  • PDF

Mathematical Model of Shock Absorber for Performance Prediction of Automobile

  • Park, Jae-Woo;Lee, Jong-Heon;Kim, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.467-478
    • /
    • 2003
  • Automotive shock absorber may not be regarded as only one(simple) damping machine because it is composed of many components, and shows non-linear damping characteristics. No matter how advanced form of shock absorber is developed, the oil shock absorber can not be neglected. because their structures are based on the oil shock absorber. Therefore it is essential to accurately analyze the dynamic characteristics of oil shock absorber. It stands mainly roi damper valve tuning which nowadays is still exhaustively done by means of ride work. In this study, damping mechanism and dynamic characteristics for oil shock absorber of twin tube type are analyzed, based on the mathematical model considering internal flow and pressure. For the reliability of numerical prediction. the database is constructed within the limit of adequate reliability. Finally, the programmed system that gives out necessary specification by inputting damping specification and tolerance is to be constructed.