• 제목/요약/키워드: Machine learning technique

검색결과 780건 처리시간 0.024초

A Novel Thresholding for Prediction Analytics with Machine Learning Techniques

  • Shakir, Khan;Reemiah Muneer, Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.33-40
    • /
    • 2023
  • Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

Agent with Low-latency Overcoming Technique for Distributed Cluster-based Machine Learning

  • Seo-Yeon, Gu;Seok-Jae, Moon;Byung-Joon, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.157-163
    • /
    • 2023
  • Recently, as businesses and data types become more complex and diverse, efficient data analysis using machine learning is required. However, since communication in the cloud environment is greatly affected by network latency, data analysis is not smooth if information delay occurs. In this paper, SPT (Safe Proper Time) was applied to the cluster-based machine learning data analysis agent proposed in previous studies to solve this delay problem. SPT is a method of remotely and directly accessing memory to a cluster that processes data between layers, effectively improving data transfer speed and ensuring timeliness and reliability of data transfer.

머신러닝을 이용한 스타트 모터의 고장예지 (Failure Prognostics of Start Motor Based on Machine Learning)

  • 고도현;최욱현;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.85-91
    • /
    • 2021
  • In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.

Identification of shear transfer mechanisms in RC beams by using machine-learning technique

  • Zhang, Wei;Lee, Deuckhang;Ju, Hyunjin;Wang, Lei
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.43-74
    • /
    • 2022
  • Machine learning technique is recently opening new opportunities to identify the complex shear transfer mechanisms of reinforced concrete (RC) beam members. This study employed 1224 shear test specimens to train decision tree-based machine learning (ML) programs, by which strong correlations between shear capacity of RC beams and key input parameters were affirmed. In addition, shear contributions of concrete and shear reinforcement (the so-called Vc and Vs) were identified by establishing three independent ML models trained under different strategies with various combinations of datasets. Detailed parametric studies were then conducted by utilizing the well-trained ML models. It appeared that the presence of shear reinforcement can make the predicted shear contribution from concrete in RC beams larger than the pure shear contribution of concrete due to the intervention effect between shear reinforcement and concrete. On the other hand, the size effect also brought a significant impact on the shear contribution of concrete (Vc), whereas, the addition of shear reinforcements can effectively mitigate the size effect. It was also found that concrete tends to be the primary source of shear resistance when shear span-depth ratio a/d<1.0 while shear reinforcements become the primary source of shear resistance when a/d>2.0.

Income prediction of apple and pear farmers in Chungnam area by automatic machine learning with H2O.AI

  • Hyundong, Jang;Sounghun, Kim
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.619-627
    • /
    • 2022
  • In Korea, apples and pears are among the most important agricultural products to farmers who seek to earn money as income. Generally, farmers make decisions at various stages to maximize their income but they do not always know exactly which option will be the best one. Many previous studies were conducted to solve this problem by predicting farmers' income structure, but researchers are still exploring better approaches. Currently, machine learning technology is gaining attention as one of the new approaches for farmers' income prediction. The machine learning technique is a methodology using an algorithm that can learn independently through data. As the level of computer science develops, the performance of machine learning techniques is also improving. The purpose of this study is to predict the income structure of apples and pears using the automatic machine learning solution H2O.AI and to present some implications for apple and pear farmers. The automatic machine learning solution H2O.AI can save time and effort compared to the conventional machine learning techniques such as scikit-learn, because it works automatically to find the best solution. As a result of this research, the following findings are obtained. First, apple farmers should increase their gross income to maximize their income, instead of reducing the cost of growing apples. In particular, apple farmers mainly have to increase production in order to obtain more gross income. As a second-best option, apple farmers should decrease labor and other costs. Second, pear farmers also should increase their gross income to maximize their income but they have to increase the price of pears rather than increasing the production of pears. As a second-best option, pear farmers can decrease labor and other costs.

Prediction of uplift capacity of suction caisson in clay using extreme learning machine

  • Muduli, Pradyut Kumar;Das, Sarat Kumar;Samui, Pijush;Sahoo, Rupashree
    • Ocean Systems Engineering
    • /
    • 제5권1호
    • /
    • pp.41-54
    • /
    • 2015
  • This study presents the development of predictive models for uplift capacity of suction caisson in clay using an artificial intelligence technique, extreme learning machine (ELM). Other artificial intelligence models like artificial neural network (ANN), support vector machine (SVM), relevance vector machine (RVM) models are also developed to compare the ELM model with above models and available numerical models in terms of different statistical criteria. A ranking system is presented to evaluate present models in identifying the 'best' model. Sensitivity analyses are made to identify important inputs contributing to the developed models.

머신러닝을 이용한 사용자 행동 인식 기반의 PIN 입력 기법 연구 (A Study of User Behavior Recognition-Based PIN Entry Using Machine Learning Technique)

  • 정창훈;;장룡호;양대헌;이경희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권5호
    • /
    • pp.127-136
    • /
    • 2018
  • 이 논문에서는 스마트폰에서 사용자 인증 프로토콜에 머신러닝을 사용하는 기법을 제안한다. 우리가 제안하는 기법은 사용자가 PIN을 입력할 때, PIN 뿐만 아니라 추가적으로 스크린을 터치하는 시간 간격 및 위치를 인증 정보로 수집하여 식별자로 사용하는 기법이다. 먼저 사용자 등록 단계에서 다수의 사용자 터치 시간 및 위치 데이터를 수집 한 다음, 그 데이터로 머신러닝을 이용하여 모델을 제작한다. 그리고 사용자 인증 단계에서 사용자가 입력한 PIN을 비교하고, PIN이 일치하면 사용자의 터치 시간 및 위치 데이터를 모델에 입력하여 기존에 수집한 데이터와 거리를 비교하여, 그에 따라 인증 성공 여부가 결정된다. 우리는 사용성 실험과 보안성 실험을 통하여 이 기법을 사용하는데 큰 불편이 없다는 것(FRR : 0%)과, 이전의 사용되고 있던 PIN 입력 기법보다 안전하다는 것(FAR : 0%)을 보였고, 그에 따라 충분히 사용될 수 있는 기법이라는 것을 확인하였다. 또한 숄더 서핑 공격 실험을 통하여 PIN이 유출되어도 보안 사고가 발생하기 힘들다는 것(FAR : 5%)을 확인하였다.

Support Vector Machine을 이용한 부도예측모형의 개발 -격자탐색을 이용한 커널 함수의 최적 모수 값 선정과 기존 부도예측모형과의 성과 비교- (Support Vector Bankruptcy Prediction Model with Optimal Choice of RBF Kernel Parameter Values using Grid Search)

  • 민재형;이영찬
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.55-74
    • /
    • 2005
  • Bankruptcy prediction has drawn a lot of research interests in previous literature, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper employs a relatively new machine learning technique, support vector machines (SVMs). to bankruptcy prediction problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, we use grid search technique using 5-fold cross-validation to find out the optimal values of the parameters of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM. we compare its performance with multiple discriminant analysis (MDA), logistic regression analysis (Logit), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.

심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델 (Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique)

  • 이재윤;이스라엘 또레스 삐네다;잡 반 티엔;이동근;김영상;안국영;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.