• 제목/요약/키워드: Machine data analysis

검색결과 2,229건 처리시간 0.031초

Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측 (Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming)

  • 김성겸;황세윤;이장현
    • 대한조선학회논문집
    • /
    • 제57권5호
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

고 정밀 캠 프로파일 CNC 연삭기의 구조설계 및 평가에 관한 연구 (A Study on Structural Design and Evaluation of the High Precision Cam Profile CNC Grinding Machine)

  • 임상헌;신상훈;이춘만
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.113-120
    • /
    • 2006
  • A cam profile CNC grinding machine is developed for manufacture of high precision contoured cams. The developed machine is composed of the high precision spindle using boll bearings, the high stiffness box layer type bed and the three axis CNC controller with the high resolution AC servo motor. In this paper, structural and modal analysis for the developed machine is carried out to check the design criteria of the machine. The analysis is carried out by FEM simulation using the commercial software, CATIA V5. The machine is modeled by placing proper shell and solid finite elements. And also, this paper presents the measurement system and experimental investigation on the modal analysis of a grinding machine. The weak part of the machine is found by the experimental evaluation. The results provide structure modification data for good dynamic behaviors. And safety of the machine was confirmed by the modal analysis of modified machine design. Finally, the cam profile grinding machine was successfully developed.

Analysis of Female Lower Body Shapes for the Development of Slacks Patterns: Exploring Body Clusters Using Machine Learning

  • Ji Min Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제12권3호
    • /
    • pp.434-440
    • /
    • 2024
  • SIZE KOREA updates body measurement data every five years, providing essential information for the fashion industry. This anthropometric data is widely used to diagnose consumer body shapes and develop optimal clothing sizes. Artificial intelligence, particularly machine learning, excels in predicting such body shape classifications. This study seeks to enhance the suitability of clothing design by applying the new analytical methodology of machine learning techniques to better capture and classify the unique body shapes of Korean women. In this study, machine learning techniques such as K-means clustering, Silhouette analysis, and Decision Tree analysis were used to classify the lower body shapes of Korean women in their twenties and identify standard body shapes useful for slacks design. The results showed that the lower body of the age group could be classified into three categories: 'small stature' (the majority), 'tall with an average lower body volume,' and 'medium height with a fuller lower body' (the smallest share). The three-cluster approach is validated through Silhouette analysis, which minimizes misclassification. Decision Tree analysis then further defines the criteria for these clusters, highlighting waist height and hip depth as the most significant factors, achieving a classification accuracy of 90.6%. While this study is not directly related to Robotic Process Automation, its detailed analysis of body shapes for slacks patterns can aid RPA in clothing production. Future research should continue integrating machine learning in human body and fashion design studies.

화상해석에 의한 기계윤할 운동면의 작동상태 진단 (Operating Condition Diagnosis of the Lubricated Machine Moving Surface by Image Analysis)

  • 박흥식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.79-87
    • /
    • 1999
  • The most part of the faculty drop a trouble and damage of machine equipment even if whatever cause they break out take place at local and trifling place and the factor dominating their trouble is due to wear debris occurred in the lubricated machine moving surface. This study has been car-ried out to identify morphology of wear debris on the lubricated machine moving system by means of computer image analysis. Namely the wear debris contained in lubricating oil extracted from movable machine equipment will be filtered through membrane filter(void diameter 0.45${\mu}m$) and will be analyzed with its data information such as 50% volume diameter aspect roundness and reflectivity. Morphological characteristic of wear debris is easily distinguished by four shape parameters it is necessary to divide small class of every 100 wear debris in total wear particles in order to distinguish morphological characteristic of wear debris more easily by computer image analysis. We are sure that operation condition diagnosis of the lubricated machine moving surfaces is possible by computer image analysis.

  • PDF

Investigation of Topographic Characteristics of Parcels Using UAV and Machine Learning

  • Lee, Chang Han;Hong, Il Young
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.349-356
    • /
    • 2017
  • In this study, we propose a method to investigate topographic characteristics by applying machine learning which is an artificial intelligence analysis method based on the spatial data constructed using UAV and the training data created through spatial analysis. This method provides an alternative to the subjective judgment and accuracy of spatial data, which is a problem of existing topographic characteristics survey for officially assessed land price. The analysis method of this study is expected to improve the problems of topographic characteristics survey method of existing field researchers and contribute to more accurate decision of officially assessed land price by providing more objective land survey method.

An Improved Text Classification Method for Sentiment Classification

  • Wang, Guangxing;Shin, Seong Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.41-48
    • /
    • 2019
  • In recent years, sentiment analysis research has become popular. The research results of sentiment analysis have achieved remarkable results in practical applications, such as in Amazon's book recommendation system and the North American movie box office evaluation system. Analyzing big data based on user preferences and evaluations and recommending hot-selling books and hot-rated movies to users in a targeted manner greatly improve book sales and attendance rate in movies [1, 2]. However, traditional machine learning-based sentiment analysis methods such as the Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) had performed poorly in accuracy. In this paper, an improved kNN classification method is proposed. Through the improved method and normalizing of data, the purpose of improving accuracy is achieved. Subsequently, the three classification algorithms and the improved algorithm were compared based on experimental data. Experiments show that the improved method performs best in the kNN classification method, with an accuracy rate of 11.5% and a precision rate of 20.3%.

Machine-actionable Data Management Plans Model Analysis and Improvement Direction

  • Kim, Suntae
    • Journal of Information Science Theory and Practice
    • /
    • 제8권4호
    • /
    • pp.20-28
    • /
    • 2020
  • In this study, the RDA DMP Common Standard (RDCS), a data model for implementing a machine actionable Data Management Plan (maDMP), was analyzed in four aspects. First, the twelve class models proposed by RDCS were analyzed. Second, whether the DMP attribute was included in the class attribute was analyzed. Third, we analyzed the namespace used for RDCS properties. Fourth, the values and identifiers used in RDCS properties were analyzed. As a result of the analysis, four directions for improvement were derived. First, it is necessary to add an academic record class to describe information such as papers and reports, which are representative academic documents. Second, the primary research institution, responsibility, resources, option attribute, and additional attributes are needed to describe the researcher's affiliation information. Third, it is necessary to additionally use a namespace such as Friend of a Friend that can be used universally. Fourth, the use of digital object identifier should be considered to identify academic literature.

기계학습 활용을 위한 학습 데이터세트 구축 표준화 방안에 관한 연구 (A study on the standardization strategy for building of learning data set for machine learning applications)

  • 최정열
    • 디지털융복합연구
    • /
    • 제16권10호
    • /
    • pp.205-212
    • /
    • 2018
  • 고성능 CPU/GPU의 개발과 심층신경망 등의 인공지능 알고리즘, 그리고 다량의 데이터 확보를 통해 기계학습이 다양한 응용 분야로 확대 적용되고 있다. 특히, 사물인터넷, 사회관계망서비스, 웹페이지, 공공데이터로부터 수집된 다량의 데이터들이 기계학습의 활용에 가속화를 가하고 있다. 기계학습을 위한 학습 데이터세트는 응용 분야와 데이터 종류에 따라 다양한 형식으로 존재하고 있어 효과적으로 데이터를 처리하고 기계학습에 적용하기에 어려움이 따른다. 이에 본 논문은 표준화된 절차에 따라 기계학습을 위한 학습 데이터세트를 구축하기 위한 방안을 연구하였다. 먼저 학습 데이터세트가 갖추어야할 요구사항을 문제 유형과 데이터 유형별로 분석하였다. 이를 토대로 기계학습 활용을 위한 학습 데이터세트 구축에 관한 참조모델을 제안하였다. 또한 학습 데이터세트 구축 참조모델을 국제 표준으로 개발하기 위해 대상 표준화 기구의 선정 및 표준화 전략을 제시하였다.

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교 (Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information)

  • 홍동희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.