• 제목/요약/키워드: Machine classification

검색결과 2,099건 처리시간 0.025초

포장층 이상구간에서 획득한 열화상 이미지 해석을 위한 CNN 알고리즘의 적용성 평가 (Assessment of Applicability of CNN Algorithm for Interpretation of Thermal Images Acquired in Superficial Defect Inspection Zones)

  • 장병수;김영석;김세원;최현준;윤형구
    • 한국지반공학회논문집
    • /
    • 제39권10호
    • /
    • pp.41-48
    • /
    • 2023
  • 도로 하부에 발생된 이상구간은 사용자의 안전을 위협하고 보수하기 위해서도 많은 사회적 비용이 동반된다. 본 연구에서는 적외선 카메라를 사용하여 이상구간 매질에 따른 온도 분포를 실험적으로 평가하고 이를 머신러닝 기법으로 분석하고자 하였다. 대상 현장은 가로와 세로 및 깊이가 모두 50cm인 정육면체 형태로 설정하였고, 이상구간은 물과 공기로 결정하였다. 실험부지의 상부는 포장층을 모사하기 위해 콘크리트 블록을 설치하였으며, 오후 4시부터 다음날 오후 3시까지 총 23시간 동안 포장층의 온도 분포를 측정하였다. 측정된 값은 이미지 형태로 도출되었으며, 이미지 중간부분에서 측정 온도의 수치를 추출하였다. 최대온도와 최저온도의 차이는 물, 공기, 그리고 원 지반에서 각각 34.8℃, 34.2℃ 그리고 28.6℃로 나타났으며, 이미지 분석 기법인 convolution neural network(CNN) 방법을 활용하여 각 측정 이미지에 해당하는 조건을 분류하였다. 분류를 수행하기 위해서는 res net 101과 squeeze net 네트워크가 이용되었다. res net 101의 분류 정확도는 물, 공기 그리고 원 지반에서 각각 70%, 50% 그리고 80%로 나타났고, squeeze net의 분류 정확도는 60%, 30% 그리고 70%로 나타났다. 해당 연구 결과는 수치데이터로 특징 판단이 어려울 경우 이미지 기반의 CNN 알고리즘을 활용하면 매질 특성 분석이 가능하고 지반내 상태도 예측할 수 있는 방법론을 보여준다.

GPT를 활용한 개인정보 처리방침 안전성 검증 기법 (Safety Verification Techniques of Privacy Policy Using GPT)

  • 심혜연;권민서;윤다영;서지영;이일구
    • 정보보호학회논문지
    • /
    • 제34권2호
    • /
    • pp.207-216
    • /
    • 2024
  • 4차 산업혁명으로 인해 빅데이터가 구축됨에 따라 개인 맞춤형 서비스가 급증했다. 이로 인해 온라인 서비스에서 수집하는 개인정보의 양이 늘어났으며, 사용자들의 개인정보 유출 및 프라이버시 침해 우려가 높아졌다. 온라인 서비스 제공자들은 이용자들의 프라이버시 침해 우려를 해소하기 위해 개인정보 처리방침을 제공하고 있으나, 개인정보 처리방침은 길이가 길고 복잡하여 이용자가 직접 위험 항목을 파악하기 어려운 문제로 인해 오남용되는 경우가 많다. 따라서 자동으로 개인정보 처리방침이 안전한지 여부를 검사할 수 있는 방법이 필요하다. 그러나 종래의 블랙리스트 및 기계학습 기반의 개인정보 처리방침 안전성 검증 기법은 확장이 어렵거나 접근성이 낮은 문제가 있다. 본 논문에서는 문제를 해결하기위해 생성형 인공지능인 GPT-3.5 API를 이용한 개인정보 처리방침 안전성 검증 기법을 제안한다. 새로운 환경에서도 분류 작업을 수행할 수 있고, 전문 지식이 없는 일반인이 쉽게 개인정보 처리방침을 검사할 수 있다는 가능성을 보인다. 실험에서는 블랙리스트 기반 개인정보 처리방침과 GPT 기반 개인정보 처리방침이 안전한 문장과 안전하지 않은 문장의 분류를 얼마나 정확하게 하는지와 분류에 소요된 시간을 측정했다. 실험 결과에 따르면, 제안하는 기법은 종래의 블랙리스트 기반 문장 안전성 검증 기법보다 평균적으로 10.34% 높은 정확도를 보였다.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • 제25권7호
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

땅밀림 실태조사 우려지 판정에서의 주요 산지환경 인자 분석 (Identifying Main Forest Environmental Factors to Discern Slow-Moving Landslide-Prone Areas in the Republic of Korea)

  • 김동엽;윤상후;임상준;서정일;봉태호
    • 한국산림과학회지
    • /
    • 제113권3호
    • /
    • pp.349-360
    • /
    • 2024
  • 이 연구는 2019~2021년 3년 동안 실시된 땅밀림 실태조사 자료를 기반으로 국내 땅밀림 우려지 판정에 영향을 미치는 주요 산지환경 인자를 분석하고자 하였다. 총 256개소의 현장조사 야장자료에서 지질, 토양, 지형 등 7개 분야 총 29개 산지환경 인자의 특성값을 수집하였으며, 기계학습모형의 구축 과정 중 분류 정확도가 높은 것으로 평가된 랜덤포레스트(AUC=0.910) 및 XGBoost(Accuracy=0.808, Kappa=0.594, F1-measure=0.494) 모형을 활용하여 분석을 수행하였다. 그 결과, 분류 중요도를 나타내는 MDG(Mean Decrease Gini)가 높게 산출된 균열유무(두 모형의 평균 MDG 22.1), 최대고도(14.8), 단차유무(7.0) 등이 땅밀림 우려지 판정에 중요한 영향 인자로 나타났다. 균열유무와 단차유무는 땅밀림 발생 특성과 잘 합치하여 향후 땅밀림 실태조사에서의 중요성이 더 강화되어야 할 것으로 판단되었다. 하지만, 최대고도의 영향력은 분석에 사용된 입력자료의 특성으로 인하여 다소 과대평가된 것으로 생각되었다. 이러한 결과를 통해 땅밀림 실태조사에서의 최종 판정의 정확성과 효율성을 더욱 향상시킬 수 있을 것으로 기대되었다.

딥러닝을 활용한 고대 수막새 이미지 분류 검토 (Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images)

  • 김영현
    • 헤리티지:역사와 과학
    • /
    • 제57권3호
    • /
    • pp.24-35
    • /
    • 2024
  • 최근 의료, 제조, 자율주행, 보안 등 다양한 분야에서 인공지능과 컨볼루션 신경망 등 딥러닝 기술을 활용한 연구들이 활발하게 진행되고 있으며, 사회 전반에 적지 않은 영향을 미치고 있다. 본 연구 또한 이러한 흐름에 맞춰서 고고학 유물 분류에 딥러닝을 활용해 보았다. 즉, 연구는 고고학 조사를 통해 출토된 고대 수막새의 이미지 분류에 딥러닝 기술을 적용하는 초보적 시도로서, 고구려, 백제, 신라 시대의 수막새 이미지를 CNN 모델로 학습시켜 분류를 진행하였다. 고구려, 백제, 신라 수막새 이미지 각각 100장씩 총 300장을 기반으로 기본 데이터셋을 형성하였고, 데이터 증강 기법을 활용하여 4배를 증가시킴으로써 총 1,200장을 데이터셋으로 구축하였다. 사전 훈련된 EfficientNetB0 모델의 전이학습을 통하여 모델을 구축한 후, 5겹 교차검증을 실시한 결과 평균 학습 정확도 98.06%, 검증 정확도 97.08%를 기록하였다. 또한 학습된 모델을 240장의 테스트 데이터셋으로 성능을 평가한 결과, 최소 91% 이상의 높은 정확도로 삼국의 수막새 이미지를 시대별로 구분할 수 있음을 확인하였다. 특히 학습률 0.0001에서 정확도 92.92%, 정밀도 92.96%, 재현율 92.92%, F1 점수 92.93%로 가장 우수한 성능을 보였는데, 이는 다양한 학습률 설정을 통하여 과적합과 과소적합 문제를 방지함과 동시에 최적의 매개변수를 찾는 과정에서 이루어졌다. 본 연구의 결과는 한국 고고학 자료의 분류에 딥러닝 기술 활용 가능성을 확인했다는 점에서 의의가 있다고 생각된다. 또한 기존에 축적·제작된 ImageNet 데이터셋 및 파라미터가 고고 자료 분석에도 긍정적으로 적용할 수 있음을 확인하였다. 이러한 접근은 향후 고고학 데이터베이스 축적이나 활용, 박물관의 유물 분류 및 정리 등 다양한 방식의 모델을 창출할 수 있을 것이다.

부정맥 증상을 자동으로 판별하는 Random Forest 분류기의 정확도 향상을 위한 수정 알고리즘에 대한 연구 (Research on the modified algorithm for improving accuracy of Random Forest classifier which identifies automatically arrhythmia)

  • 이현주;신동규;박희원;김수한;신동일
    • 정보처리학회논문지B
    • /
    • 제18B권6호
    • /
    • pp.341-348
    • /
    • 2011
  • 생체신호의 한 분야인 심전도는 분류알고리즘을 사용한 실험이 일반적이다. 심전도를 실험한 논문에서 사용된 분류알고리즘은 대부분 SVM(Support Vector Machine), MLP(Multilayer Perceptron) 이었으나, 본 실험은 Random Forest 분류기를 시도하였다. 실험방법은 Random Forest 알고리즘을 실험데이터의 신호의 특징에 기반하여 분석하도록 수정하였고, 분류기의 수정된 알고리즘 성능을 규명하기 위하여 SVM과 MLP 분류기와 정확도를 비교 분석하였다. 실험에서는 심전도 신호의 R-R interval을 추출하여 시행하였으며 또한 동일한 데이터를 사용한 타 논문의 결과와 본 실험의 결과를 비교 분석하였다. 결과는 수정된 Random Forest 분류기가 SVM, MLP 분류기, 그리고 타 실험의 결과보다 정확도 부분에서는 우수한 결과를 도출하였다. 본 실험의 전처리 과정에서는 대역통과필터를 사용하여 R-R interval을 추출하였다. 그러나 심전도 실험에서는 대역통과 필터 뿐 아니라, 웨이블릿 변환, 메디안 필터, 유한 임펄스 필터 등으로 실험하는 경우가 많다. 따라서 향후에는 전처리과정에서 기저선 잡음(baseline wandering)을 효율적으로 제거하는 필터의 선택이 필요하며, R-R interval을 정확하게 추출할 수 있는 방법에 대한 연구가 필요하다고 사려된다.

Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류 (Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques)

  • 권형석;류경호;심익현;이춘기;오석훈
    • 지구물리와물리탐사
    • /
    • 제23권4호
    • /
    • pp.230-242
    • /
    • 2020
  • 201 6년 9월에 발생한 경주지진원 구역에 대한 정밀 지질구조 규명을 위해 MT 탐사를 적용하였다. 경주지역의 MT 측정자료는 조사지역 인근의 지하철, 전력선, 공장, 주택, 농경지에서 발생된 전기적 잡음과 철도, 도로에서의 차량잡음 등으로 인해 측정자료 왜곡이 심하게 발생되었다. 이 연구에서는 고속철도 및 고속도로와 인접한 4개소의 MT 탐사자료에 기계학습 기법을 적용하여 차량잡음이 포함된 시계열을 분류하였다. 고속열차 잡음이 포함된 시계열에 대해서는 확률적 경사 하강법, 서포트 벡터 머신과 랜덤 포레스트 3가지의 분류모델을 적용하여 그 결과를 비교하였다. 대형트럭 잡음이 포함된 시계열 자료에 대해서는 Hx 성분, Hy 성분과 Hx & Hy 합성성분 크기에 대한 3가지의 샘플 자료를 준비하였으며 랜덤 포레스트 분류모델을 구성하여 그 성능을 평가하였다. 마지막으로 차량잡음 제거 효과 분석을 위하여 차량잡음 제거 전후의 시계열, 진폭 스펙트럼과 겉보기비저항 곡선을 비교하였으며, 이를 통해 차량잡음이 영향을 미치는 주파수 대역과 차량잡음 제거 시 발생될 수 있는 문제점에 대해 고찰하였다.

XGBoost를 활용한 고속도로 콘크리트 포장 파손 예측 (Predicting Highway Concrete Pavement Damage using XGBoost)

  • 이용준;선종완
    • 한국건설관리학회논문집
    • /
    • 제21권6호
    • /
    • pp.46-55
    • /
    • 2020
  • 도로연장의 지속적인 증가와 공용기간이 상당히 경과한 노후 노선이 늘어남에 따라 도로포장에 대한 유지관리비용은 점차 증가하고 있어, 예방적 유지관리를 통해 비용을 최소화 하는 방안에 대한 필요성이 제기되고 있다. 예방적 유지관리를 위해서는 도로포장의 정확한 파손 예측을 통한 전략적 유지관리 계획 수립이 필요하다. 이에 본 연구에서는 고속도로 콘크리트 포장 파손 예측 모델 개발을 위해 머신러닝 분류기반 모델 중 성능이 우수한 XGBoost 기법을 사용하였다. 먼저 데이터 샘플링을 통해 데이터 불균형 문제를 해결하고 샘플링된 데이터들에 XGBoost 기법을 활용하여 예측모델을 개발하고. F1 소코어를 통해 성능을 평가하였다. 분석 결과 오버 샘플링 기법이 가장 좋은 성능 결과를 보였으며, 도로파손에 영향을 주는 주요 변수로 공용년수, ESAL, 최저 평균 최저기온 -2도 이하 일수 순으로 산정되었다. 향후 더 많은 데이터 축적 및 세밀한 데이터 전처리 작업을 통해 예측모델의 성능이 향상된다면 보다 정확한 유지보수 필요 구간의 예측이 가능해질 것으로 판단되므로 장래 고속도로 포장 유지보수 예산의 추정에 중요한 기초정보로 활용될 수 있을 것이라 기대된다.

A study on Decision Model of Disuse Status for the Commercial Vehicles Considering the Military Operating Environment

  • Lee, Jae-Ha;Moon, Ho-Seok
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.141-149
    • /
    • 2020
  • 현재 군에서 운용하는 차량 중에 민간에서 사용하고 있는 상용차량이 차지하는 비중이 58%로 매우 높고 앞으로 더욱 증가할 계획이다. 군에서 상용차량의 비중이 높아진 만큼 상용차량의 불용처리 결정 여부도 중요한 문제 중의 하나이다. 현재 상용차량의 불용처리 결정은 차량 기술검사관이 설계수명과 차량사용 정보를 이용해서 주관적으로 판단하고 있으나, 군 운용환경에 따른 차이가 반영되어 있지 않고 객관적인 판단 기준이 제시되어 있지는 않다. 본 연구는 군 운용환경을 고려하여 상용차량의 불용여부를 판단하는 모델을 개발하는 것이다. 연구에서 활용한 자료는 육·해·공군의 승용차, 승합차량, 트럭 세 가지 상용차량 1,746대였고, 운용지역, 기후특성, 차량상태 등의 정보를 이용하여 분류 머신러닝 기법을 이용해 불용여부 판단 모델을 구축하였다. 제안하는 불용여부 판단 모델은 정확도가 평균적으로 약 97%였으며, 야전에서도 사용할 수 있는 형태의 모델이다. 연구결과를 바탕으로 향후 상용차량 불용 여부 판단 모델 성능 향상 방안과 군수정보체계 내에 새롭게 구축해야 할 데이터 구축 방향을 장·단기적으로 정책 제언하였다.

자산변동 좌표 클러스터링 기반 게임봇 탐지 (Game-bot detection based on Clustering of asset-varied location coordinates)

  • 송현민;김휘강
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1131-1141
    • /
    • 2015
  • 본 논문에서는 MMORPG에서 각 캐릭터의 소지금 증가/감소 이벤트 로그 데이터를 위주로 플레이어의 액션 로그 데이터를 조사하여 게임봇을 탐지하는 기계 학습 기반의 새로운 접근 방법을 제안한다. 게임봇 계정과 일반 계정을 구분하는 주요 피쳐를 추출하기 위해 밀도 기반 군집화 알고리즘의 하나인 DBSCAN (Density Based Spatial Clustering of Application with Noise)를 이용하였다. DBSCAN 알고리즘을 통해 각 플레이어의 소지금 증가/감소 위치 좌표를 클러스터링하고, 그 결과 생성된 클러스터의 수, 코어 포인트의 비율, 멤버 포인트의 비율, 노이즈 포인트의 비율과 같은 공간적 특성을 나타내는 값들을 추출하였다. 해당 피쳐들을 사용하면 게임봇 개발자들이 게임봇 탐지 시스템의 원리를 알더라도 넓은 지역을 돌아다니며 사냥을 하도록 게임봇 프로그램을 제작하는 것은 매우 비효율적이기 때문에 탐지 시스템을 우회하기 어렵게 된다. 결과적으로, 게임봇은 소지금 변동 좌표 데이터로부터 추출한 공간적 특성에서 일반유저와 명확한 차이를 보였다. 예를 들면, DBSCAN 클러스터링 결과 중 노이즈 포인트의 비율에서 게임봇은 5% 이하의 낮은 값을 가지는 반면에 일반 유저들은 대부분 높은 값을 갖는다. 실제 MMORPG의 액션 로그 데이터를 이용한 게임봇 탐지에서, 본 논문에서 제안된 시스템은 높은 탐지율의 우수한 성능을 보였다.