본 논문에서는 금속스크랩이 쌓이는 스크랩박스의 적치 상태를 측정하는 알고리즘을 제안한다. 적치 상태 측정 문제를 다중 클래스 분류 문제로 정의하여, 딥러닝 기법을 이용해 스크랩박스 촬영 영상만으로 적치 상태를 구분하도록 하였다. Transfer Learning 방식으로 학습을 진행하였으며, 딥러닝 모델은 NASNet-A를 이용하였다. 더불어 분류 모델의 정확도를 높이기 위해 학습된 NASNet-A에 랜덤포레스트 분류기를 결합하였으며, 후처리를 통해 안전성을 높였다. 현장에서 수집된 4,195개의 데이터로 테스트한 결과 NASNet-A만 적용했을때 정확도 55%를 보였으며, 제안 방식인 Random Forest를 결합한 NASNet은 88%로 향상된 정확도를 달성하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권6호
/
pp.2996-3011
/
2017
With rapid growth of web technology and dissemination of smart devices, social networking service(SNS) is widely used. As a result, huge amount of data are generated from SNS such as Twitter, and sentiment analysis of SNS data is very important for various applications and services. In the existing sentiment analysis based on the $Na{\ddot{i}}ve$ Bayes algorithm, a same number of attributes is usually employed to estimate the weight of each class. Moreover, uncountable and meaningless attributes are included. This results in decreased accuracy of sentiment analysis. In this paper two methods are proposed to resolve these issues, which reflect the difference of the number of positive words and negative words in calculating the weights, and eliminate insignificant words in the feature selection step using Multinomial $Na{\ddot{i}}ve$ Bayes(MNB) algorithm. Performance comparison demonstrates that the proposed scheme significantly increases the accuracy compared to the existing Multivariate Bernoulli $Na{\ddot{i}}ve$ Bayes(BNB) algorithm and MNB scheme.
We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.
Purpose: The purpose of this study was to identify the noise level and frequency experienced by premature infants receiving incubator care in the neonatal intensive care unit (NICU). Methods: The participants were 20 premature infants receiving incubator care in the NICU of a university hospital in Daejeon Metropolitan city. The noise level was measured using a professional sound-level meter (ET-958, FLUS, Shenzhen, China) based on a noise classification table developed by the author. The data were analyzed with descriptive statistics, the t-test, analysis of variance, and Pearson correlation coefficients using SPSS for Windows version 22.0. Results: The average noise level experienced by premature infants receiving incubator care in the NICU was 51.25 dB (range: 45.0~81.7 dB). The frequency of noises was highest for factors related to nursing activities (40.3%), followed by human factors (29.1%), machine alarm sounds (20.1%), incubator operation (6.6%), and internal environmental factors (3.9%). Conclusion: According to the above results, the noise level experienced by premature infants receiving incubator care in the NICU exceeded the recommendations of the American Academy of Pediatrics. Therefore, it is necessary to develop an interventional program to reduce noise in the NICU, and to conduct follow-up studies to verify its effectiveness.
본 논문에서는 동영상의 압축 정보를 이용하여 동영상 조작 시 발생하는 특징 패턴을 분석하여 동영상의 삭제 여부를 검출하는 기법에 대해 소개한다. 제안 방식에서는 최근 표준 코덱으로 개발되어 향후 널리 사용될 것으로 예상되는 HEVC 코덱을 이용한다. 우선 조작된 동영상과 그렇지 않은 동영상의 HEVC 부호화 패턴 중 분류하기가 용이한 여러 패턴들을 분석하여 특징벡터로 선정하고, 선정된 특징벡터를 기계학습을 통해 학습하여 두 그룹 간의 분류 기준을 모델링하여 동영상에 대한 삭제 여부를 판단한다. 실험 결과, 제안한 방식이 이전의 연구 결과에 비해 HEVC 코덱 환경에서 더욱 효과적으로 삭제 여부를 판단함을 확인하였다.
Japanese cedar has low density and poor mechanical performance. Manufacturing glue-laminated timber (glulam) is the best way to compensate for its poor mechanical performance. The Korean Standard (KS) confines outermost lamina of glulam to higher grade than E8, but the yield of higher than grade E8 from logs is only 6.5%. Therefore, the aim of this study is to investigate the possibility of non-Korean-Standard glulam in structural applications. Allowable stresses determined by both hand-calculation and Monte-Carlo simulation show a higher allowable stress than that of the KS-standard glulam of 6S-22B. In the Korean Standard (KS), knot characteristics are not taken into account. Japanese cedar has relatively small knots. We believe that the small knots in Japanese cedar contribute to a higher allowable stress than the KS-standard glulam would predict. The species classification of KS is required to be further subdivided into sub-species groups based on knot characteristics.
본 논문에서는 유전자 사이의 상관계수가 높은 마이크로어레이 데이타에 대하여 제안하는 알고리즘을 통해 상관계수가 낮은 유전자들의 부집합을 만들고, 이에 대해 적합 함수를 통한 평가로 기존 방법론이 가지는 한계를 극복할 수 있도록 하였다. 기존 방법론은 개별 특징의 평가를 통해 중복 특징을 제거하며, 상관계수에 대한 고려가 없어 선택된 유전자 부집합들의 상관계수가 논은 문제가 있었다. 이에 따라 제안하는 알고리즘은 특징간의 관계를 평가하는 Feature Wrapping 기법을 활용하여, 추출된 유전자 부집합에 포함된 유전자 사이의 상관관계가 낮고, 클래스 구분력이 높은 특징을 갖도록 하였다.
본 논문에서는 분산된 거대한 네트워크상의 데이터에서 유용한 정보를 추출하는 새로운 마이그레이션 조절방법을 이용한 유전 알고리즘을 제안한다. 제안된 알고리즘의 주된 아이디어는 부분 개체군 사이에서 개체들의 이동에 필요한 파라미터들을 적응적으로 결정하는 것이다. 또 이동된 개체들이 새로운 부분 개체군에서 도태되지 않고 적응 할 수 있기 위한 방법을 제시한다. UCI 기계학습 관련 데이터 셋에서 중앙 집중적 단일 유전 알고리즘과 제안된 알고리즘을 비교하기 위해 여섯 개의 데이터를 사용했다. 결론적으로 분산 유전 알고리즘을 적용한 특징 부분 집합이 단일 유전 알고리즘을 적용한 것 보다 좋은 성능을 보였다.
본 논문에서는 강구조물의 제작 및 시공에서 용접이음부의 고품질을 확보하기 위하여 강구조물 용접이음부 외부결함의 자동검출에 관한 화상처리 알고리즘을 개발한다. 개발 알고리즘은 광학계의 적절한 배치에 의해 얻어지는 4매의 입력화상을 이용하여 기존의 기법에서 검출할 수 없었던 용접이음부 외부결함을 검출할 수 있음을 보인다. 용접 외부결함이 존재하는 시험편을 제작하고 실험을 통하여 개발 알고리즘의 유용성을 확인하였다. 또한 검출된 용접외부결함의 분류 결과를 육안검사 결과와 비교하였다.
A rotor system is composed of a rotating shaft with supporting bearings. The rotor system is widely used in every rotating machinery such as the turbine generator and the high precision machine tools. A negligible error or malfunction in the rotor, however, can cause a catastrophic failure in the system then result in the environmental and economic disasters. A diagnosis of the rotor system is important in preventing these kinds of failures and disasters. Up to now, many researchers have devoted in the development of diagnosing tools for the system. The basic principles behind the tools are to retrieve the data through the sensors for a specific state of the system and then to identify the specific state through the heuristic methods such as neural network, fuzzy logic, and decision matrix. The proper usage of the heuristic methods will enhance the performance of the diagnostic procedure when together used with the statistical signal processing. In this paper, the methodologies in using the above 3 heuristic methods for the diagnostics of the rotor system are established and also tested and validated for the data retrieved from the rolling element bearing and journal bearing supported system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.