• Title/Summary/Keyword: Machine Translation System

Search Result 169, Processing Time 0.02 seconds

A Principle-based Korean / Japanese Machine Translation System : NARA (원리에 따른 한 / 일 기계번역 시스팀 : NARA)

  • Jeong, Hui-Seong
    • ETRI Journal
    • /
    • v.10 no.3
    • /
    • pp.140-156
    • /
    • 1988
  • This paper presents methodological and theoretical principles for constructing a machine thanslation system between Korean and Japanese. We focus our discussion on the real time computing problem of the machine translation system. This problem is characterized in the time and space complexity during the machine translation. The NARA system has the real time computing algorithm which is based on a mathematical model integrating the linguistic competence and the linguistic performance of both languages, with consequence that the system NARA has also the functional characteristic : the two-way translation mechanism.

  • PDF

Environment for Translation Domain Adaptation and Continuous Improvement of English-Korean Machine Translation System

  • Kim, Sung-Dong;Kim, Namyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • This paper presents an environment for rule-based English-Korean machine translation system, which supports the translation domain adaptation and the continuous translation quality improvement. For the purposes, corpus is essential, from which necessary information for translation will be acquired. The environment consists of a corpus construction part and a translation knowledge extraction part. The corpus construction part crawls news articles from some newspaper sites. The extraction part builds the translation knowledge such as newly-created words, compound words, collocation information, distributional word representations, and so on. For the translation domain adaption, the corpus for the domain should be built and the translation knowledge should be constructed from the corpus. For the continuous improvement, corpus needs to be continuously expanded and the translation knowledge should be enhanced from the expanded corpus. The proposed web-based environment is expected to facilitate the tasks of domain adaptation and translation system improvement.

Linguistic Modeling for Multilingual Machine Translation based on Common Transfer (공통변환 기반 다국어 자동번역을 위한 언어학적 모델링)

  • Choi, Sungkwon;Kim, Younggil
    • Language and Information
    • /
    • v.18 no.1
    • /
    • pp.77-97
    • /
    • 2014
  • Multilingual machine translation means the machine translation that is for more than two languages. Common transfer means the transfer in which we can reuse the transfer rules among similar languages according to linguistic typology. Therefore, the multilingual machine translation based on common transfer is the multilingual machine translation that can share the transfer rules among languages with similar linguistic typology. This paper describes the linguistic modeling for multilingual machine translation based on common transfer under development. This linguistic modeling consists of the linguistic devices such as 1) multilingual common Part-of-Speech set, 2) multilingual common transfer format, 3) multilingual common transfer chunking, and 4) multilingual common transfer rules based on linguistic typology. Validity of this linguistic modeling for multilingual machine translation is shown in the simulation. The multilingual machine translation system based on common transfer including Korean, English, Chinese, Spanish, and French will be developed till 2018.

  • PDF

Automatic Post Editing Research (기계번역 사후교정(Automatic Post Editing) 연구)

  • Park, Chan-Jun;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • Machine translation refers to a system where a computer translates a source sentence into a target sentence. There are various subfields of machine translation. APE (Automatic Post Editing) is a subfield of machine translation that produces better translations by editing the output of machine translation systems. In other words, it means the process of correcting errors included in the translations generated by the machine translation system to make proofreading. Rather than changing the machine translation model, this is a research field to improve the translation quality by correcting the result sentence of the machine translation system. Since 2015, APE has been selected for the WMT Shaed Task. and the performance evaluation uses TER (Translation Error Rate). Due to this, various studies on the APE model have been published recently, and this paper deals with the latest research trends in the field of APE.

Customizing an English-Korean Machine Translation System for Patent Translation

  • Choi, Sung-Kwon;Kim, Young-Gil
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.105-114
    • /
    • 2007
  • This paper addresses a method for customizing an English-to-Korean machine translation system from general domain to patent domain. The customizing method consists of following steps: 1) linguistically studying about characteristics of patent documents, 2) extracting unknown words from large patent documents and constructing large bilingual terminology, 3) extracting and constructing the patent-specific translation patterns 4) customizing the translation engine modules of the existing general MT system according to linguistic study about characteristics of patent documents, and 5) evaluating the accuracy of translation modules and the translation quality. This research was performed under the auspices of the MIC (Ministry of Information and Communication) of Korean government during 2005-2006. The translation accuracy of the customized English-Korean patent translation system is 82.43% on the average in 5 patent fields (machinery, electronics, chemistry, medicine and computer) according to the evaluation of 7 professional human translators. In 2006, the patent MT system started an on-line patent MT service in IPAC (International Patent Assistance Center) under MOCIE (Ministry of Commerce, Industry and Energy) in Korea. In 2007, KIPO (Korean Intellectual Property Office) tries to launch an English-Korean patent MT service.

  • PDF

Effect of Korean Analysis Tool (UTagger) on Korean-Vietnamese Machine Translations (한-베 기계번역에서 한국어 분석기 (UTagger)의 영향)

  • Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.184-189
    • /
    • 2017
  • With the advent of robust deep learning method, Neural machine translation has recently become a dominant paradigm and achieved adequate results in translation between popular languages such as English, German, and Spanish. However, its results in under-resourced languages Korean and Vietnamese are still limited. This paper reports an attempt at constructing a bidirectional Korean-Vietnamese Neural machine translation system with the supporting of Korean analysis tool - UTagger, which includes morphological analyzing, POS tagging, and WSD. Experiment results demonstrate that UTagger can significantly improve translation quality of Korean-Vietnamese NMT system in both translation direction. Particularly, it improves approximately 15 BLEU scores for the translation from Korean to Vietnamese direction and 3.12 BLEU scores for the reverse direction.

  • PDF

Effect of Korean Analysis Tool (UTagger) on Korean-Vietnamese Machine Translations (한-베 기계번역에서 한국어 분석기 (UTagger)의 영향)

  • Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.184-189
    • /
    • 2017
  • With the advent of robust deep learning method, Neural machine translation has recently become a dominant paradigm and achieved adequate results in translation between popular languages such as English, German, and Spanish. However, its results in under-resourced languages Korean and Vietnamese are still limited. This paper reports an attempt at constructing a bidirectional Korean-Vietnamese Neural machine translation system with the supporting of Korean analysis tool - UTagger, which includes morphological analyzing, POS tagging, and WSD. Experiment results demonstrate that UTagger can significantly improve translation quality of Korean-Vietnamese NMT system in both translation direction. Particularly, it improves approximately 15 BLEU scores for the translation from Korean to Vietnamese direction and 3.12 BLEU scores for the reverse direction.

  • PDF

Classification-Based Approach for Hybridizing Statistical and Rule-Based Machine Translation

  • Park, Eun-Jin;Kwon, Oh-Woog;Kim, Kangil;Kim, Young-Kil
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.541-550
    • /
    • 2015
  • In this paper, we propose a classification-based approach for hybridizing statistical machine translation and rulebased machine translation. Both the training dataset used in the learning of our proposed classifier and our feature extraction method affect the hybridization quality. To create one such training dataset, a previous approach used auto-evaluation metrics to determine from a set of component machine translation (MT) systems which gave the more accurate translation (by a comparative method). Once this had been determined, the most accurate translation was then labelled in such a way so as to indicate the MT system from which it came. In this previous approach, when the metric evaluation scores were low, there existed a high level of uncertainty as to which of the component MT systems was actually producing the better translation. To relax such uncertainty or error in classification, we propose an alternative approach to such labeling; that is, a cut-off method. In our experiments, using the aforementioned cut-off method in our proposed classifier, we managed to achieve a translation accuracy of 81.5% - a 5.0% improvement over existing methods.

A Bidirectional Korean-Japanese Statistical Machine Translation System by Using MOSES (MOSES를 이용한 한/일 양방향 통계기반 자동 번역 시스템)

  • Lee, Kong-Joo;Lee, Song-Wook;Kim, Jee-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.683-693
    • /
    • 2012
  • Recently, statistical machine translation (SMT) has received many attention with ease of its implementation and maintenance. The goal of our works is to build bidirectional Korean-Japanese SMT system by using MOSES [1] system. We use Korean-Japanese bilingual corpus which is aligned per sentence to train the translation model and use a large raw corpus in each language to train each language model. The proposed system shows results comparable to those of a rule-based machine translation system. Most of errors are caused by noises occurred in each processing stage.

The Construction of a German-Korean Machine Translation System for Nominal Phrases (독-한 명사구 기계번역시스템의 구축)

  • Lee, Minhaeng;Choi, Sung-Kwon;Choi, Kyung-Eun
    • Language and Information
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1998
  • This paper aims to describe a German-Korean machine translation system for nominal phrases. Besides, we have two subgoals. First, we are going to revea linguistic differences between two languages and propose a language-informational method fo overcome the differences. The method is based on an integrated model of translation knowledge, efficient information structure, and concordance selection. Then, we will show the statistical results about translation experiment and its evaluation as an evidence for the adequacy of our linguistic method and translation system itself.

  • PDF