• 제목/요약/키워드: Machine Tools Feed System

검색결과 67건 처리시간 0.024초

리니어모터 시스템 구조설계에 관한 연구 (A Study on the Structural Design of Linear Motor System)

  • 은인웅;이춘만;황영국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1059-1063
    • /
    • 2005
  • Development of a feed drive-system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, due to great power loss and magnetic attraction of the linear motors heating and deflection problems occur. Therefore, it is necessary to design strong structure, cooling device with high efficiency and light weight construction in designing stage of linear motors. This paper presents an investigation into a structural design of linear motor system. In this research, a new concept of moving table with high stiffness and of cooling plate is also introduced. Structure analyses are performed by using a commercial code ANSYS in order to evaluate the design safety.

  • PDF

Machining Center의 2차원 원호보간정밀도 진단 System의 개발 (A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers)

  • 김정순;남궁석;제정신
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

타원.인벌루트 조합 형상을 갖는 지로터 펌프의 통합적 설계 자동화 시스템 개발 (Development of an Automated Integrated Design System for Gerotor Pumps with Multiple Profiles(Ellipse and Involute))

  • 문현기;정성윤;배준호;장영준;김철
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.67-77
    • /
    • 2010
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated design system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance plus CFD-ACE+. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. CFD simulation results show trends similar to those carried out in experiments, and a quantitative comparison is presented. Results obtained from the automotive integrated design system enable the designer and manufacturer of oil pump to be more efficient in this field.

LM 볼가이드의 마찰력 정식화 (Formulation of Friction Forces in LM Ball Guides)

  • 오광제;김경호;박천홍;정성종
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.199-206
    • /
    • 2016
  • LM 볼가이드는 구름접촉을 갖는 이송시스템의 핵심요소로서 공작기계, 반도체 장비, 로봇 등 정밀기계에 널리 사용된다. 그러나 LM 볼가이드에서 발생하는 마찰력은 마찰열을 유발하여 위치 정도를 저하시키고 강성과 예압 변화를 야기한다. 이런 영향을 정확하게 분석하여 정밀 기계설계에 응용하기 위해서는 마찰력 모델의 정식화가 요구된다. 본 논문에서는 구름마찰, 점성마찰, 슬립마찰을 고려한 LM 볼가이드의 정확한 마찰력 모델을 유도한다. 그리고 다양한 조립, 부하 및 속도 조건에서 실험을 수행하여 마찰력 모델의 신뢰성을 검증하고, 마찰력 모델로부터 마찰 성분의 영향력을 분석한다.

Deep Hole 가공시 SM55C의 절삭성에 관한 연구 (A Study on Machinability of SM55C for Deep Hole Drilling)

  • 이충일
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.177-182
    • /
    • 1997
  • The purpose of this study is to analyze how tools, guide bush type and the change of cutting speed have effects on the diameter of cutting hole, surface roughness of workpiece and roundness during the deep hole machining of SM55C with solid BTA drill by using BTA drilling system through experiment. Conclusion reached is as follows. (1) The diameter was expanded for 25${\mu}{\textrm}{m}$ at the first section and then was reduced 0${\mu}{\textrm}{m}$ and 15${\mu}{\textrm}{m}$ respectively at the 10m and 20m section comparing to the diameter of tool with respect to the variation of cutting length. (2) It was proved that roughness was below 12S for the whole section of cutting length. (3) The roundness has been below 12${\mu}{\textrm}{m}$. Regarding the polygon phenomenon, it has bee proved that not only uneven number of angle but also even number (quadrilateral, elliptical) of angle were made. (4) Variation of diameter, surface roughness of workpiece and roundness turned out to ve the best at 70m/min of cutting speed, 0.15mm/rev of feed.

  • PDF

AHP를 활용한 머시닝센터의 밀링커터 선정 (Milling Cutter Selection in Machining Center Using AHP)

  • 이교선;박수용;이동형
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.164-170
    • /
    • 2017
  • The CNC machine tool field is showing a growing trend with the recent rapid development of manufacturing industries such as semiconductors, automobiles, medical devices, various inspection and test equipment, mechanical metal processing equipment, aircraft, shipbuilding and electronic equipment. However, small and medium-sized machining companies that use CNC machine tools are experiencing difficulties in increasingly intense competition. Especially, small companies which are receiving orders from 3rd or 4th venders are very difficult in business management. In recent years, company S experienced difficulty to make product quality and delivery time due to the ignorance of the processing method when manufacturing cooling plate jig made of SUS304 material used for cell phone liquid crystal glass processing. In order to solve these problems, we redesigned the process according to the size of our company and tried to manage all processes with quantified data. In the meantime, we have found that there is a need to improve the cutter process, which accounts for most of the machining process. Therefore, we have investigated the correlation between RPM and FEED of three cutters that have been used in the past. As a result, we found that it is the most urgent problem to solve the roughing process during the cutter operation which occupies more than 70% of the total machining. In order to shorten the machining time and improve the quality in machining of SUS304 cooling plate jig, we select the main factors such as price, tool life, maintenance cost, productivity, quality, RPM, and FEED and use AHP to find the most suitable milling cutter. We also tried to solve the problem of delivery, quality and production capacity which was a big problem of S company through experiment operation with selected cutter tool. As a result, the following conclusions were drawn. First, the most efficient of the three cutters currently available in the machining center has proven to be an M-cutter. Second, although one additional facility was required, it was possible to produce the existing facilities without additional investment by supplementing the lack of production capacity due to productivity improvement. Third, the Company's difficulties in delivery and capacity shortfalls have been resolved. Fourth, annual sales increased by KRW 109 million and profits increased by KRW 32 million annually. Fifth, it can confirm the usefulness of AHP method in corporate decision making and it can be utilized in various facility investment and process improvement in the future.

탄소섬유강화플라스틱(CFRP)의 적층 배향각에 따른 드릴링 가공 특성 고찰 (Investigation Into the Drilling Characteristics of Carbon Fiber Reinforced Plastic (CFRP) with Variation of the Stacking Sequence Angle)

  • 김태영;김호석;신형곤
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.250-258
    • /
    • 2014
  • Due to recent industrial growth and development, there has been a high demand for light and highly durable materials. Therefore, a variety of new materials has been developed. These new materials include carbon fiber reinforced plastic (CFRP or CRP), which is a wear-, fatigue-, heat-, and corrosion-resistant material. Because of its advantageous properties, CFRP is widely used in diverse fields including sporting goods, electronic parts, and medical supplies, as well as aerospace, automobile, and ship materials. However, this new material has several problems, such as delamination around the inlet and outlet holes at drilling, fiber separation, and tearing on the drilled surface. Moreover, drill chips having a fine particulate shape are harmful to the work environment and engineers' health. In fact, they deeply penetrate into machine tools, causing the reduction of lifespan and performance degradation. In this study, CFRP woven and unidirectional prepregs were formed at $45^{\circ}$ and $90^{\circ}$, respectively, in terms of orientation angle. Using a high-speed steel drill and a TiAIN-coated drill, the two materials were tested in three categories: cutting force with respect to RPM and feed speed; shape changes around the input and outlet holes; and the shape of drill chips.