• Title/Summary/Keyword: Machine Tool Error

Search Result 519, Processing Time 0.027 seconds

Estimation and Evaluation of Volumetric Position Errors for Multi-axis Machine Tools (다축공작기계의 공간오차 예측 및 검증)

  • Hwang, Jooho;Nguyen, Ngoc Cao;Bui, Chin Ba;Park, Chun-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • This paper describes a method of estimating and evaluating the volumetric errors of multi-axis machine tools. The estimation method is based on a generic model that was developed from conventional kinematic error models for the geometric and thermal errors to help predict the volumetric error easily in various configurations. To demonstrate the advantages of the model, an application in the early stages of a five-axis machine tool design is presented as an example. The model was experimentally evaluated for a four-axis machine tool by using the data from ISO230-6 and R-test measurements to compare the estimated and measured volumetric errors.

Design of Thermal Displacement Compensation Sensor for High Reliability Machine Tools (고신뢰 머시닝센터를 위한 열변위 보상 센서 설계기술)

  • Kim, Il-Hae;Jang, Dong-Young;Park, Jeong-Hoon;Park, Sung-Wook;Shim, Poong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.886-893
    • /
    • 2011
  • To increase the reliability and positional accuracy of a machine tool, a novel capacitive displacement sensor having a cylindrical shape is presented to measure the axial displacement of a machine tool spindle. Characteristics of the sensor were analyzed by numerical simulation. The sensor was built into a specific machine tool spindle and its performance was experimentally investigated. The accuracy of a thermal error compensation system of a machine tool can be enhanced greatly using proposed sensor.

A study of an OMM system for machined spherical form measurement using the volumetric error compensation of Machining Center (머시닝센터의 오차보상을 통한 구면 가공형상 측정 OMM 시스템 연구)

  • 이찬호;오창진;이응석;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.838-841
    • /
    • 2000
  • To improve the accuracy of products and improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as well as error analysis of machine tools has been studied for last several decades. OMM(On the Machine Measurement) has been issued to alternate with CMM, pointing out disadvantages of high expenses and lots of setting time in CMM. In this paper, we study 1) the spherical surface manufacturing by volumetric error compensation of machine tool, 2) the system development of OMM without detaching work piece from a bed of machine tool after working. 3) the generation of the finished part profile by On the machine measurement. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

The Development of An Error Measurement System of 5-Axis Mill & Turn Machine Tool by Double Ball Bar Test (DBB를 이용한 5축 복합가공기의 오차 측정 시스템 개발에 관한 연구)

  • Kim T.H.;Jung Y.G.;Ko H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.243-244
    • /
    • 2006
  • In this paper, the development of an error measurement system of 5-axis mill & turn machine tool presented by double ball bar test, which has been widely used to measure the overall accuracy of machining center. and the reliability of an error measurement system of 5-axis mill & turn machine tool was secured by the direct cutting test.

  • PDF

A Study on the Test Workpiece for Accuracy Evaluation of 5-Axis Machine Tool (5축 공작기계 정밀도 평가를 위한 표준 공작물에 관한 연구)

  • Youn, Jae-Woong;Kim, Ki-Hwan;Park, Jong Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Recently, a demand for precision 5-axis machine tools is significantly increasing, and the maintenance of machine tool accuracy becomes more important. it is very difficult to evaluate to accuracy of 5-axis M/C in the production site since it needs expensive measuring equipment and skilled engineer. On the other hand, evaluation items of 5-axis M/C are not systematically organized in the existing KS and ISO standards. In this study, the evaluation items for 5-axis M/C were derived systematically and a test workpiece was developed to evaluate the machine tool accuracy more easily. The error sources of machine tool can be estimated by machining and measuring of the test workpiece. The correlation between the machine tool accuracy and the accuracy of machined test workpiece was analyzed. As a result, the accuracy of machined test workpiece represented the accuracy of machine tool and the error sources very effectively.

Geometric error assessment system for linear guideway using laser-photodiodes (레이저-수광소자를 이용한 선형 이송측의 기하학적 오차측정 시스템)

  • Pahk, H.J.;Chu, C.N.;Hwang, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.180-188
    • /
    • 1994
  • Error assessment and evaluation for machine for machine tool slides have been considered as essential tools for improving accuracy. In this paper, a computer aided measurement technique is proposed using photo pin diodes of quadrant type and laser source. In thedeveloped system, three photo diodes are mounted on a sensor mounting table, and the sensored signal is processed by specially designed signal conditioner to give fine resolution with minimum noise. A micro computer inputs the processed signal, and the geometric errors of five degree of freedoms are successfully evaluated. Pitch, roll, yaw, vertical and horizontal straightness errors are thus assessed simultaneously for a machine tool slide. Calibration techniques such as optics calibration, photo diode calibration are proposed and implemented, giving precise calibration for the measurement system. The developed system has been applied to a practical machine tool slide, and has been found as one of efficient and precise technique for machine tool slide.

  • PDF

Analysis of 3D Volumetric Error for Machine Tool using Ball Bar (볼바를 이용한 공작기계의 3차원 공간오차 해석)

  • Lee, Ho-Young;Choi, Hyun-Jin;Son, Jae-Hwan;Lee, Dal-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. Therefore, it is very important to assess errors in machine tools. Volumetric error analysis has been developed by many researchers. This paper presents a useful technique for analyzing the volumetric errors in machine tools using the ball bar. The volumetric error model is proposed in specific vertical machining center and the program is developed for generating NC code, acquiring the ball bar data, and analyzing the volumetric errors. The developed system assesses the volumetric errors such as positional, straightness, squareness, and back lash. Also this system analyzes the dynamic performance such as servo gain mismatch. The radial data acquired by ball bar on 3D space is used for analyzing these errors. It is convenient to test the volumetric errors on 3D space because all errors are calculated at once. The developed system has been tested using an actual vertical machining center.