• Title/Summary/Keyword: Machine Security System

Search Result 410, Processing Time 0.027 seconds

Modeling in System Engineering: Conceptual Time Representation

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.153-164
    • /
    • 2021
  • The increasing importance of such fields as embedded systems, pervasive computing, and hybrid systems control is increasing attention to the time-dependent aspects of system modeling. In this paper, we focus on modeling conceptual time. Conceptual time is time represented in conceptual modeling, where the notion of time does not always play a major role. Time modeling in computing is far from exhibiting a unified and comprehensive framework, and is often handled in an ad hoc manner. This paper contributes to the establishment of a broader understanding of time in conceptual modeling based on a software and system engineering model denoted thinging machine (TM). TM modeling is founded on a one-category ontology called a thimac (thing/machine) that is used to elaborate the design and analysis of ontological presumptions. The issue under study is a sample of abstract modeling domains as exemplified by time. The goal is to provide better understanding of the TM model by supplementing it with a conceptualization of time aspects. The results reveal new characteristics of time and related notions such as space, events, and system behavior.

Software Vulnerability Prediction System Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 소프트웨어 취약 여부 예측 시스템)

  • Choi, Minjun;Kim, Juhwan;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.635-642
    • /
    • 2018
  • In the Era of the Fourth Industrial Revolution, we live in huge amounts of software. However, as software increases, software vulnerabilities are also increasing. Therefore, it is important to detect and remove software vulnerabilities. Currently, many researches have been studied to predict and detect software security problems, but it takes a long time to detect and does not have high prediction accuracy. Therefore, in this paper, we describe a method for efficiently predicting software vulnerabilities using machine learning algorithms. In addition, various machine learning algorithms are compared through experiments. Experimental results show that the k-nearest neighbors prediction model has the highest prediction rate.

Machine-to-Machine (M2M) Communications in Vehicular Networks

  • Booysen, M.J.;Gilmore, J.S.;Zeadally, S.;Rooyen, G.J. Van
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.529-546
    • /
    • 2012
  • To address the need for autonomous control of remote and distributed mobile systems, Machine-to-Machine (M2M) communications are rapidly gaining attention from both academia and industry. M2M communications have recently been deployed in smart grid, home networking, health care, and vehicular networking environments. This paper focuses on M2M communications in the vehicular networking context and investigates areas where M2M principles can improve vehicular networking. Since connected vehicles are essentially a network of machines that are communicating, preferably autonomously, vehicular networks can benefit a lot from M2M communications support. The M2M paradigm enhances vehicular networking by supporting large-scale deployment of devices, cross-platform networking, autonomous monitoring and control, visualization of the system and measurements, and security. We also present some of the challenges that still need to be addressed to fully enable M2M support in the vehicular networking environment. Of these, component standardization and data security management are considered to be the most significant challenges.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

Opposition to BOF in ARM architecture based Linux system (ARM 아키텍처 기반의 리눅스 시스템에서 BOF에 대한 대응)

  • Nam, TaekJun;Kang, JungMin;Jang, InSook;Lee, Jinseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1165-1168
    • /
    • 2004
  • 본 논문은 임베디드 장비에 사용되는 코어중 시장의 약 70% 이상을 점유하고 있는 ARM(Advanced RISC Machine) 코어에서의 BOF(Buffer OverFlow)에 대해서 논하고자 한다. 먼저, ARM 아키텍처에서 함수 호출시 스택의 변화에 대해서 기술하고 이 환경에서 시스템 공격 기법 중 가장 빈번한 BOF가 어떻게 이루어지는가에 대해서 설명한다. 그리고 ARM 아키텍처만이 가지는 특징을 이용하여 이에 대처하는 방법을 제안 한다.

  • PDF

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique (정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Oh, Soo-hyun;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2019
  • Malware infringement attacks are continuously increasing in various environments such as mobile, IOT, windows and mac due to the emergence of new and variant malware, and signature-based countermeasures have limitations in detection of malware. In addition, analytical performance is deteriorating due to obfuscation, packing, and anti-VM technique. In this paper, we propose a system that can detect malware based on machine learning by using similarity hashing-based pattern detection technique and static analysis after file classification according to packing. This enables more efficient detection because it utilizes both pattern-based detection, which is well-known malware detection, and machine learning-based detection technology, which is advantageous for detecting new and variant malware. The results of this study were obtained by detecting accuracy of 95.79% or more for benign sample files and malware sample files provided by the AI-based malware detection track of the Information Security R&D Data Challenge 2018 competition. In the future, it is expected that it will be possible to build a system that improves detection performance by applying a feature vector and a detection method to the characteristics of a packed file.

The Management and Security Plans of a Separated Virtualization Infringement Type Learning Database Using VM (Virtual Machine) (VM(Virtual Machine) 을 이용한 분리된 가상화 침해유형 학습 데이터베이스 관리와 보안방안)

  • Seo, Woo-Seok;Jun, Moon-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.947-953
    • /
    • 2011
  • These days, a consistent and fatal attack attribute toward a database has proportionally evolved in the similar development form to that of security policy. Because of access control-based defensive techniques regarding information created in closed networks and attacks on a limited access pathway, cases of infringement of many systems and databases based on accumulated and learned attack patterns from the past are increasing. Therefore, the paper aims to separate attack information by its types based on a virtual infringement pattern system loaded with dualistic VM in order to ensure stability to limited certification and authority to access, to propose a system that blocks infringement through the intensive management of infringement pattern concerning attack networks, and to improve the mechanism for implementing a test that defends the final database, the optimal defensive techniques, and the security policies, through research.