• Title/Summary/Keyword: Machine Learning and Artificial Intelligence

Search Result 747, Processing Time 0.029 seconds

Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scintillation Detector

  • Jeon, Byoungil;Kim, Jongyul;Yu, Yonggyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.204-212
    • /
    • 2021
  • Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.

A study on the standardization strategy for building of learning data set for machine learning applications (기계학습 활용을 위한 학습 데이터세트 구축 표준화 방안에 관한 연구)

  • Choi, JungYul
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.205-212
    • /
    • 2018
  • With the development of high performance CPU / GPU, artificial intelligence algorithms such as deep neural networks, and a large amount of data, machine learning has been extended to various applications. In particular, a large amount of data collected from the Internet of Things, social network services, web pages, and public data is accelerating the use of machine learning. Learning data sets for machine learning exist in various formats according to application fields and data types, and thus it is difficult to effectively process data and apply them to machine learning. Therefore, this paper studied a method for building a learning data set for machine learning in accordance with standardized procedures. This paper first analyzes the requirement of learning data set according to problem types and data types. Based on the analysis, this paper presents the reference model to build learning data set for machine learning applications. This paper presents the target standardization organization and a standard development strategy for building learning data set.

A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors (핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상)

  • Kim, Hong Gon;Kim, Sodam;Kim, Hee-Wooong
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.

The Development of Interactive Artificial Intelligence Blocks for Image Classification (이미지 분류를 위한 대화형 인공지능 블록 개발)

  • Park, Youngki;Shin, Youhyun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.1015-1024
    • /
    • 2021
  • There are various educational programming environments in which students can train artificial intelligence (AI) using block-based programming languages, such as Entry, Machine Learning for Kids, and Teachable Machine. However, these programming environments are designed so that students can train AI through a separate menu, and then use the trained model in the code editor. These approaches have the advantage that students can check the training process more intuitively, but there is also the disadvantage that both the training menu and the code editor must be used. In this paper, we present a novel artificial intelligence block that can perform both AI training and programming in the code editor. While this AI block is presented as a Scratch block, the training process is performed through a Python server. We describe the blocks in detail through the process of training a model to classify a blue pen and a red pen, and a model to classify a dental mask and a KF94 mask. Also, we experimentally show that our approach is not significantly different from Teachable Machine in terms of performance.

Artificial Intelligence Application Cases and Considerations in Digital Healthcare (디지털헬스케어에서의 인공지능 적용 사례 및 고찰)

  • Park, Minseo
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.141-147
    • /
    • 2022
  • In a broad sense, the definition of digital health care is an industrial area that manages personal health and diseases through the convergence of the health care industry and ICT. In a narrow sense, various medical technologies are used to manage medical services to improve patient health. This paper aims to provide design guidelines so that artificial intelligence technology can be applied stably and efficiently to more diverse digital health care fields in the future by introducing use cases of artificial intelligence and machine learning techniques applied in the digital health care field. For this purpose, in this thesis, the medical field and the daily life field are divided and examined. The two regions have different data characteristics. By further subdividing the two areas, we looked at the use cases of artificial intelligence algorithms according to data characteristics and problem definitions and characteristics. Through this, we will increase our understanding of artificial intelligence technologies used in the digital health care field and examine the possibility of using various artificial intelligence technologies.

A Study on the Construction Method of HS Item Classification Decision System Based on Artificial Intelligence

  • Choi, keong ju
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.165-172
    • /
    • 2020
  • Industrial Revolution means the improvement of productivity through technological innovation and has been a driving force of the whole change of economic system and social structure as the characteristic of technology as the tool of this productivity has changed. Since the first industrial revolution of the 18th century, productivity efficiency has been advanced through three industrial revolutions so far, and this fourth industrial revolution is expected to bring about another revolution of production. In this study, the demand for the introduction of artificial intelligence(AI) technology has been increasing in various business fields due to the rapid development of ICT technology, and the classification of HS(harmonized commodity description and coding system) items has been decided using artificial intelligence technology, which is the core of the fourth industrial revolution. And it is enough to construct HS classification system based on AI technology using inference and deep learning. Performing the HS item classification is not an easy task. Implementation of item classification system using artificial intelligence technology to analyze information of HS item classification which is performed manually by the current person more accurately and without any mistake, And the customs administrations, customs offices, and customs agencies, it is expected to be highly utilized in the innovation of trade practice and the customs administration innovation FTA origin agent.

A Study on Reliability Analysis According to the Number of Training Data and the Number of Training (훈련 데이터 개수와 훈련 횟수에 따른 과도학습과 신뢰도 분석에 대한 연구)

  • Kim, Sung Hyeock;Oh, Sang Jin;Yoon, Geun Young;Kim, Wan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the Gradient Descent Optimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.

Autonomous-Driving Vehicle Learning Environments using Unity Real-time Engine and End-to-End CNN Approach (유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경)

  • Hossain, Sabir;Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.122-130
    • /
    • 2019
  • Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.

A Study on Crime Prediction to Reduce Crime Rate Based on Artificial Intelligence

  • KIM, Kyoung-Sook;JEONG, Yeong-Hoon
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2021
  • This paper was conducted to prevent and respond to crimes by predicting crimes based on artificial intelligence. While the quality of life is improving with the recent development of science and technology, various problems such as poverty, unemployment, and crime occur. Among them, in the case of crime problems, the importance of crime prediction increases as they become more intelligent, advanced, and diversified. For all crimes, it is more critical to predict and prevent crimes in advance than to deal with them well after they occur. Therefore, in this paper, we predicted crime types and crime tools using the Multiclass Logistic Regression algorithm and Multiclass Neural Network algorithm of machine learning. Multiclass Logistic Regression algorithm showed higher accuracy, precision, and recall for analysis and prediction than Multiclass Neural Network algorithm. Through these analysis results, it is expected to contribute to a more pleasant and safe life by implementing a crime prediction system that predicts and prevents various crimes. Through further research, this researcher plans to create a model that predicts the probability of a criminal committing a crime again according to the type of offense and deploy it to a web service.

A Study on the Evaluation of Optimal Program Applicability for Face Recognition Using Machine Learning (기계학습을 이용한 얼굴 인식을 위한 최적 프로그램 적용성 평가에 대한 연구)

  • Kim, Min-Ho;Jo, Ki-Yong;You, Hee-Won;Lee, Jung-Yeal;Baek, Un-Bae
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • This study is the first attempt to raise face recognition ability through machine learning algorithm and apply to CRM's information gathering, analysis and application. In other words, through face recognition of VIP customer in distribution field, we can proceed more prompt and subdivided customized services. The interest in machine learning, which is used to implement artificial intelligence, has increased, and it has become an age to automate it by using machine learning beyond the way that a person directly models an object recognition process. Among them, Deep Learning is evaluated as an advanced technology that shows amazing performance in various fields, and is applied to various fields of image recognition. Face recognition, which is widely used in real life, has been developed to recognize criminals' faces and catch criminals. In this study, two image analysis models, TF-SLIM and Inception-V3, which are likely to be used for criminal face recognition, were selected, analyzed, and implemented. As an evaluation criterion, the image recognition model was evaluated based on the accuracy of the face recognition program which is already being commercialized. In this experiment, it was evaluated that the recognition accuracy was good when the accuracy of the image classification was more than 90%. A limit of our study which is a way to raise face recognition is left as a further research subjects.