• Title/Summary/Keyword: Machine Learning and Artificial Intelligence

Search Result 747, Processing Time 0.025 seconds

Explanation of Influence Variables and Development of Tight Oil Productivity Prediction Model by Production Period using XAI Algorithm (XAI를 활용한 생산기간에 따른 치밀오일 생산성 예측 모델 개발 및 영향변수 설명)

  • Han, Dong-kwon;An, Yu-bin;Kwon, Sun-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.484-487
    • /
    • 2022
  • This study suggests an XAI-based machine learning method to predict the productivity of tight oil reservoirs according to the production period. The XAI algorithm refers to interpretable artificial intelligence and provides the basis for the predicted result and the validity of the derivation process. In this study, we proposed a supervised learning model that predicts productivity in the early and late stages of production after performing data preprocessing based on field data. and then based on the model results, the factors affecting the productivity prediction model were analyzed using XAI.

  • PDF

Development of Convergence Education Program for 'Understanding of Molecular Structure' using Machine Learning Educational Platform (머신러닝 교육 플랫폼 활용 '분자 구조의 이해'를 위한 융합교육 프로그램 개발)

  • Yi, Soyul;Lee, Youngjun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.961-972
    • /
    • 2021
  • In this study, an educational program was developed so that artificial intelligence could be used as a transdisciplinary convergence education with other disciplines. The main educational content is designed for 8 hours using machine learning to help students understand the molecular structure dealt with in high school chemistry. The program developed in this study calculated the I-CVI (Item Content Validity Index) value through expert review, and as a result, none of the items were rejected with a score of .80 or higher. Because the program of this study combines the content elements of the chemistry subject and the information (artificial intelligence) subject academically, it is expected that the learner will be able to increase the convergence talent literacy. In addition, since it is not required to secure a additional number of hours for this educational program, the burden on teachers may be low.

A Predictive Model to identify possible affected Bipolar disorder students using Naive Baye's, Random Forest and SVM machine learning techniques of data mining and Building a Sequential Deep Learning Model using Keras

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.267-274
    • /
    • 2021
  • Medical care practices include gathering a wide range of student data that are with manic episodes and depression which would assist the specialist with diagnosing a health condition of the students correctly. In this way, the instructors of the specific students will also identify those students and take care of them well. The data which we collected from the students could be straightforward indications seen by them. The artificial intelligence has been utilized with Naive Baye's classification, Random forest classification algorithm, SVM algorithm to characterize the datasets which we gathered to check whether the student is influenced by Bipolar illness or not. Performance analysis of the disease data for the algorithms used is calculated and compared. Also, a sequential deep learning model is builded using Keras. The consequences of the simulations show the efficacy of the grouping techniques on a dataset, just as the nature and complexity of the dataset utilized.

Development of vision system for quality inspection of automotive parts and comparison of machine learning models (자동차 부품 품질검사를 위한 비전시스템 개발과 머신러닝 모델 비교)

  • Park, Youngmin;Jung, Dong-Il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.409-415
    • /
    • 2022
  • In computer vision, an image of a measurement target is acquired using a camera. And feature values, vectors, and regions are detected by applying algorithms and library functions. The detected data is calculated and analyzed in various forms depending on the purpose of use. Computer vision is being used in various places, especially in the field of automatically recognizing automobile parts or measuring the quality. Computer vision is being used as the term machine vision in the industrial field, and it is connected with artificial intelligence to judge product quality or predict results. In this study, a vision system for judging the quality of automobile parts was built, and the results were compared by applying five machine learning classification models to the produced data.

A Study on Predicting Lung Cancer Using RNA-Sequencing Data with Ensemble Learning (앙상블 기법을 활용한 RNA-Sequencing 데이터의 폐암 예측 연구)

  • Geon AN;JooYong PARK
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • In this paper, we explore the application of RNA-sequencing data and ensemble machine learning to predict lung cancer and treatment strategies for lung cancer, a leading cause of cancer mortality worldwide. The research utilizes Random Forest, XGBoost, and LightGBM models to analyze gene expression profiles from extensive datasets, aiming to enhance predictive accuracy for lung cancer prognosis. The methodology focuses on preprocessing RNA-seq data to standardize expression levels across samples and applying ensemble algorithms to maximize prediction stability and reduce model overfitting. Key findings indicate that ensemble models, especially XGBoost, substantially outperform traditional predictive models. Significant genetic markers such as ADGRF5 is identified as crucial for predicting lung cancer outcomes. In conclusion, ensemble learning using RNA-seq data proves highly effective in predicting lung cancer, suggesting a potential shift towards more precise and personalized treatment approaches. The results advocate for further integration of molecular and clinical data to refine diagnostic models and improve clinical outcomes, underscoring the critical role of advanced molecular diagnostics in enhancing patient survival rates and quality of life. This study lays the groundwork for future research in the application of RNA-sequencing data and ensemble machine learning techniques in clinical settings.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

An Engine for DRA in Container Orchestration Using Machine Learning

  • Gun-Woo Kim;Seo-Yeon Gu;Seok-Jae Moon;Byung-Joon Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.126-133
    • /
    • 2023
  • Recent advancements in cloud service virtualization technologies have witnessed a shift from a Virtual Machine-centric approach to a container-centric paradigm, offering advantages such as faster deployment and enhanced portability. Container orchestration has emerged as a key technology for efficient management and scheduling of these containers. However, with the increasing complexity and diversity of heterogeneous workloads and service types, resource scheduling has become a challenging task. Various research endeavors are underway to address the challenges posed by diverse workloads and services. Yet, a systematic approach to container orchestration for effective cloud management has not been clearly defined. This paper proposes the DRA-Engine (Dynamic Resource Allocation Engine) for resource scheduling in container orchestration. The proposed engine comprises the Request Load Procedure, Required Resource Measurement Procedure, and Resource Provision Decision Procedure. Through these components, the DRA-Engine dynamically allocates resources according to the application's requirements, presenting a solution to the challenges of resource scheduling in container orchestration.

Machine Learning Language Model Implementation Using Literary Texts (문학 텍스트를 활용한 머신러닝 언어모델 구현)

  • Jeon, Hyeongu;Jung, Kichul;Kwon, Kyoungah;Lee, Insung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.427-436
    • /
    • 2021
  • The purpose of this study is to implement a machine learning language model that learns literary texts. Literary texts have an important characteristic that pairs of question-and-answer are not frequently clearly distinguished. Also, literary texts consist of pronouns, figurative expressions, soliloquies, etc. They hinder the necessity of machine learning using literary texts by making it difficult to learn algorithms. Algorithms that learn literary texts can show more human-friendly interactions than algorithms that learn general sentences. For this goal, this paper proposes three text correction tasks that must be preceded in researches using literary texts for machine learning language model: pronoun processing, dialogue pair expansion, and data amplification. Learning data for artificial intelligence should have clear meanings to facilitate machine learning and to ensure high effectiveness. The introduction of special genres of texts such as literature into natural language processing research is expected not only to expand the learning area of machine learning, but to show a new language learning method.

Precision nutrition: approach for understanding intra-individual biological variation (정밀영양: 개인 간 대사 다양성을 이해하기 위한 접근)

  • Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In the past few decades, great progress has been made on understanding the interaction between nutrition and health status. But despite this wealth of knowledge, health problems related to nutrition continue to increase. This leads us to postulate that the continuing trend may result from a lack of consideration for intra-individual biological variation on dietary responses. Precision nutrition utilizes personal information such as age, gender, lifestyle, diet intake, environmental exposure, genetic variants, microbiome, and epigenetics to provide better dietary advices and interventions. Recent technological advances in the artificial intelligence, big data analytics, cloud computing, and machine learning, have made it possible to process data on a scale and in ways that were previously impossible. A big data platform is built by collecting numerous parameters such as meal features, medical metadata, lifestyle variation, genome diversity and microbiome composition. Sophisticated techniques based on machine learning algorithm can be used to integrate and interpret multiple factors and provide dietary guidance at a personalized or stratified level. The development of a suitable machine learning algorithm would make it possible to suggest a personalized diet or functional food based on analysis of intra-individual metabolic variation. This novel precision nutrition might become one of the most exciting and promising approaches of improving health conditions, especially in the context of non-communicable disease prevention.

Exploring Machine Learning Classifiers for Breast Cancer Classification

  • Inayatul Haq;Tehseen Mazhar;Hinna Hafeez;Najib Ullah;Fatma Mallek;Habib Hamam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.860-880
    • /
    • 2024
  • Breast cancer is a major health concern affecting women and men globally. Early detection and accurate classification of breast cancer are vital for effective treatment and survival of patients. This study addresses the challenge of accurately classifying breast tumors using machine learning classifiers such as MLP, AdaBoostM1, logit Boost, Bayes Net, and the J48 decision tree. The research uses a dataset available publicly on GitHub to assess the classifiers' performance and differentiate between the occurrence and non-occurrence of breast cancer. The study compares the 10-fold and 5-fold cross-validation effectiveness, showing that 10-fold cross-validation provides superior results. Also, it examines the impact of varying split percentages, with a 66% split yielding the best performance. This shows the importance of selecting appropriate validation techniques for machine learning-based breast tumor classification. The results also indicate that the J48 decision tree method is the most accurate classifier, providing valuable insights for developing predictive models for cancer diagnosis and advancing computational medical research.