• 제목/요약/키워드: Machine Learning Model

검색결과 2,511건 처리시간 0.024초

도시철도차량 주행차륜의 직경/플랜지 변화 데이터와 머신러닝 기법을 활용한 주행거리 예측 연구 (A Study on the Mileage Prediction of Urban Railway Vehicle using Wheel Diameter/Flange change Data and Machine Learning Techniques)

  • 노학락;임원식
    • 한국안전학회지
    • /
    • 제38권4호
    • /
    • pp.1-7
    • /
    • 2023
  • The steel wheels of urban railway vehicles gather a lot of data through regular measurements during maintenance. However, limited research has been carried out utilizing this data, resulting in difficulties predicting the maintenance period. This paper studied a machine learning model suitable for mileage prediction by studying the characteristics of mileage change according to diameter and flange thickness changes. The results of this study indicate that the larger the diameter, the longer the travel distance, and the longest flange thickness is at 30 mm, which gradually shortened at other times. As a result of research on the machine learning prediction model, it was confirmed that the random forest model is the optimal model with a high coefficient of determination and a low root mean square error.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

문학 텍스트를 활용한 머신러닝 언어모델 구현 (Machine Learning Language Model Implementation Using Literary Texts)

  • 전현구;정기철;권경아;이인성
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.427-436
    • /
    • 2021
  • 본 연구의 목적은 문학 텍스트를 학습한 머신 러닝 언어 모델을 구현하는데 있다. 문학 텍스트는 일상 대화문처럼 질문에 대한 답변이 분명하게 구분되지 않을 때가 많고 대명사와 비유적 표현, 지문, 독백 등으로 다양하게 구성되어 있다는 특징이 있다. 이런 점들이 알고리즘의 학습을 용이하지 않게 하여 문학 텍스트를 활용하는 기계 학습의 필요성을 저해시킨다. 문학 텍스트를 학습한 알고리즘이 일반 문장을 학습한 알고리즘에 비해 좀 더 인간 친화적인 상호작용을 보일 가능성이 높다. 본 논문은 '문학 텍스트를 학습한 머신 러닝 언어 모델 구현'에 관한 연구로서, 대화형 기계 학습에 문학 텍스트를 활용하는 연구에서 필수적으로 선행되어야 할 세 가지 텍스트 보정 작업을 제안한다: 대명사 처리, 대화쌍 늘리기, 데이터 증폭 등에 대한 내용으로 기계 학습이 용이하고 그 효과도 높다고 판단됩니다. 인공지능을 위한 학습용 데이터는 그 의미가 명료해야 기계 학습이 용이하고 그 효과도 높게 나타난다. 문학과 같은 특수한 장르의 텍스트를 자연어 처리 연구에 도입하는 것은 새로운 언어 학습 방식의 제안과 함께 머신 러닝의 학습 영역도 확장시켜 줄 것이다.

실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구 (A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics)

  • 구진희
    • 융합정보논문지
    • /
    • 제8권1호
    • /
    • pp.201-206
    • /
    • 2018
  • 최근 인공지능을 구현하기 위한 기술들이 보편화되면서 특히, 기계 학습이 폭넓게 사용되고 있다. 기계 학습은 대량의 데이터를 수집하고 일괄적으로 처리하며 최종 조치를 취할 수 있는 통찰력을 제공하나, 작업의 효과가 즉시 학습 과정에 통합되지는 않는다. 본 연구에서는 비즈니스의 큰 이슈로서 실시간 데이터 분석의 성능을 개선하기 위한 적응형 학습 모델을 제안하였다. 적응형 학습은 데이터세트의 복잡성에 적응하여 앙상블을 생성하고 알고리즘은 샘플링 할 최적의 데이터 포인트를 결정하는데 필요한 데이터를 사용한다. 6개의 표준 데이터세트를 대상으로 한 실험에서 적응형 학습 모델은 학습 시간과 정확도에서 분류를 위한 단순 기계 학습 모델보다 성능이 우수하였다. 특히 서포트 벡터 머신은 모든 앙상블의 후단에서 우수한 성능을 보였다. 적응형 학습 모델은 시간이 지남에 따라 다양한 매개변수들의 변화에 대한 추론을 적응적으로 업데이트가 필요한 문제에 폭넓게 적용될 수 있을 것으로 기대한다.

수소 메이저 홀드오버 시간예측을 위한 머신러닝 모델 개발 (Development of Machine Learning Model to Predict Hydrogen Maser Holdover Time)

  • 김상준;이영규;이준효;이주현;최경원;오주익;유동희
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.111-115
    • /
    • 2024
  • This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.

입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구 (The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction)

  • 박정수
    • 한국물환경학회지
    • /
    • 제37권5호
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.

머신러닝을 활용한 모돈의 생산성 예측모델 (Forecasting Sow's Productivity using the Machine Learning Models)

  • 이민수;최영찬
    • 농촌지도와개발
    • /
    • 제16권4호
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

정보 유출 탐지를 위한 머신 러닝 기반 내부자 행위 분석 연구 (A Study on the Insider Behavior Analysis Using Machine Learning for Detecting Information Leakage)

  • 고장혁;이동호
    • 디지털산업정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, we design and implement PADIL(Prediction And Detection of Information Leakage) system that predicts and detect information leakage behavior of insider by analyzing network traffic and applying a variety of machine learning methods. we defined the five-level information leakage model(Reconnaissance, Scanning, Access and Escalation, Exfiltration, Obfuscation) by referring to the cyber kill-chain model. In order to perform the machine learning for detecting information leakage, PADIL system extracts various features by analyzing the network traffic and extracts the behavioral features by comparing it with the personal profile information and extracts information leakage level features. We tested various machine learning methods and as a result, the DecisionTree algorithm showed excellent performance in information leakage detection and we showed that performance can be further improved by fine feature selection.

Comparison of Machine Learning Techniques for Cyberbullying Detection on YouTube Arabic Comments

  • Alsubait, Tahani;Alfageh, Danyah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.1-5
    • /
    • 2021
  • Cyberbullying is a problem that is faced in many cultures. Due to their popularity and interactive nature, social media platforms have also been affected by cyberbullying. Social media users from Arab countries have also reported being a target of cyberbullying. Machine learning techniques have been a prominent approach used by scientists to detect and battle this phenomenon. In this paper, we compare different machine learning algorithms for their performance in cyberbullying detection based on a labeled dataset of Arabic YouTube comments. Three machine learning models are considered, namely: Multinomial Naïve Bayes (MNB), Complement Naïve Bayes (CNB), and Linear Regression (LR). In addition, we experiment with two feature extraction methods, namely: Count Vectorizer and Tfidf Vectorizer. Our results show that, using count vectroizer feature extraction, the Logistic Regression model can outperform both Multinomial and Complement Naïve Bayes models. However, when using Tfidf vectorizer feature extraction, Complement Naive Bayes model can outperform the other two models.

자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정 (Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification)

  • 김영남
    • 대한상한금궤의학회지
    • /
    • 제14권1호
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF