• 제목/요약/키워드: Machine Learning Inference

검색결과 114건 처리시간 0.028초

추론 능력에 기반한 음성으로부터의 감성 인식 (Inference Ability Based Emotion Recognition From Speech)

  • 박창현;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.123-125
    • /
    • 2004
  • Recently, we are getting to interest in a user friendly machine. The emotion is one of most important conditions to be familiar with people. The machine uses sound or image to express or recognize the emotion. This paper deals with the method of recognizing emotion from the sound. The most important emotional component of sound is a tone. Also, the inference ability of a brain takes part in the emotion recognition. This paper finds empirically the emotional components from the speech and experiment on the emotion recognition. This paper also proposes the recognition method using these emotional components and the transition probability.

  • PDF

VS3-NET: Neural variational inference model for machine-reading comprehension

  • Park, Cheoneum;Lee, Changki;Song, Heejun
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.771-781
    • /
    • 2019
  • We propose the VS3-NET model to solve the task of question answering questions with machine-reading comprehension that searches for an appropriate answer in a given context. VS3-NET is a model that trains latent variables for each question using variational inferences based on a model of a simple recurrent unit-based sentences and self-matching networks. The types of questions vary, and the answers depend on the type of question. To perform efficient inference and learning, we introduce neural question-type models to approximate the prior and posterior distributions of the latent variables, and we use these approximated distributions to optimize a reparameterized variational lower bound. The context given in machine-reading comprehension usually comprises several sentences, leading to performance degradation caused by context length. Therefore, we model a hierarchical structure using sentence encoding, in which as the context becomes longer, the performance degrades. Experimental results show that the proposed VS3-NET model has an exact-match score of 76.8% and an F1 score of 84.5% on the SQuAD test set.

Spatial Information Based Simulator for User Experience's Optimization

  • Bang, Green;Ko, Ilju
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.97-104
    • /
    • 2016
  • In this paper, we propose spatial information based simulator for user experience optimization and minimize real space complexity. We focus on developing simulator how to design virtual space model and to implement virtual character using real space data. Especially, we use expanded events-driven inference model for SVM based on machine learning. Our simulator is capable of feature selection by k-fold cross validation method for optimization of data learning. This strategy efficiently throughput of executing inference of user behavior feature by virtual space model. Thus, we aim to develop the user experience optimization system for people to facilitate mapping as the first step toward to daily life data inference. Methodologically, we focus on user behavior and space modeling for implement virtual space.

선제 대응을 위한 의심 도메인 추론 방안 (A Proactive Inference Method of Suspicious Domains)

  • 강병호;양지수;소재현;김창엽
    • 정보보호학회논문지
    • /
    • 제26권2호
    • /
    • pp.405-413
    • /
    • 2016
  • 본 논문에서는 선제 대응을 위한 의심 도메인 추론 방안을 제시한다. TLD Zone 파일과 WHOIS 정보를 이용하여 의심 도메인을 추론하며, 후보 도메인 탐색, 기계 학습, 의심 도메인 집단 추론의 세 과정으로 구성되어 있다. 첫 번째 과정에서는 씨앗 도메인과 동일한 네임 서버와 업데이트 시간을 가진 다른 도메인을 TLD Zone 파일로부터 추출하여 후보 도메인을 형성하며, 두 번째 과정에서는 후보 도메인의 WHOIS 정보를 정량화하여 유사한 집단끼리 군집화 한다. 마지막 과정에서는 씨앗 도메인을 포함하는 클러스터에 속한 도메인을 의심 도메인 집단으로 추론한다. 실험에서는 .COM과 .NET의 TLD Zone 파일을 사용하였으며, 10개의 알려진 악성 도메인을 씨앗 도메인으로 이용하였다. 실험 결과, 제안하는 방안은 55개의 도메인을 의심 도메인으로 추론하였으며, 그 중 52개는 적중하였다. F1은 0.91을 기록하였으며, 정밀도는 0.95을 보였다. 본 논문에서 제안하는 방안을 통해 악성 도메인을 추론하여 사전에 차단할 수 있을 것으로 기대한다.

축교정기를 위한 자동굽힘공정제어기 설계 (Automatically Bending Process control for Shaft Straightening Machine)

  • 김승철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.54-59
    • /
    • 1998
  • In order to minimize straightness error of deflected shafts, a automatically bending process control system is designed, fabricated, and studied. The multi-step straightening process and the three-point bending process are developed for the geometric adaptive straightness control. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and studied for the three-point bending processes. Selection of a loading point supporting condition are derved form fuzzy inference and fuzzy self-learning method in the multi-step straighternign process. Automatic straightening machine is fabricated by using the develped ideas. Validity of the proposed system si verified through experiments.

  • PDF

실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구 (A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics)

  • 구진희
    • 융합정보논문지
    • /
    • 제8권1호
    • /
    • pp.201-206
    • /
    • 2018
  • 최근 인공지능을 구현하기 위한 기술들이 보편화되면서 특히, 기계 학습이 폭넓게 사용되고 있다. 기계 학습은 대량의 데이터를 수집하고 일괄적으로 처리하며 최종 조치를 취할 수 있는 통찰력을 제공하나, 작업의 효과가 즉시 학습 과정에 통합되지는 않는다. 본 연구에서는 비즈니스의 큰 이슈로서 실시간 데이터 분석의 성능을 개선하기 위한 적응형 학습 모델을 제안하였다. 적응형 학습은 데이터세트의 복잡성에 적응하여 앙상블을 생성하고 알고리즘은 샘플링 할 최적의 데이터 포인트를 결정하는데 필요한 데이터를 사용한다. 6개의 표준 데이터세트를 대상으로 한 실험에서 적응형 학습 모델은 학습 시간과 정확도에서 분류를 위한 단순 기계 학습 모델보다 성능이 우수하였다. 특히 서포트 벡터 머신은 모든 앙상블의 후단에서 우수한 성능을 보였다. 적응형 학습 모델은 시간이 지남에 따라 다양한 매개변수들의 변화에 대한 추론을 적응적으로 업데이트가 필요한 문제에 폭넓게 적용될 수 있을 것으로 기대한다.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구 (Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE)

  • 김욱동;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

교통정보 추론을 위한 비정형데이터 분석과 다중패턴저장 기법 (Unstructured Data Analysis and Multi-pattern Storage Technique for Traffic Information Inference)

  • 김용훈;김부일;정목동
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.211-223
    • /
    • 2018
  • To understand the meaning of data is a common goal of research on unstructured data. Among these unstructured data, there are difficulties in analyzing the meaning of unstructured data related to corpus and sentences. In the existing researches, the researchers used LSA to select sentences with the most similar meaning to specific words of the sentences. However, it is problematic to examine many sentences continuously. In order to solve unstructured data classification problem, several search sites are available to classify the frequency of words and to serve to users. In this paper, we propose a method of classifying documents by using the frequency of similar words, and the frequency of non-relevant words to be applied as weights, and storing them in terms of a multi-pattern storage. We use Tensorflow's Softmax to the nearby sentences for machine learning, and utilize it for unstructured data analysis and the inference of traffic information.

기계학습모델을 이용한 저수지 수위 예측 (Reservoir Water Level Forecasting Using Machine Learning Models)

  • 서영민;최은혁;여운기
    • 한국농공학회논문집
    • /
    • 제59권3호
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.