• 제목/요약/키워드: Machine Learning Algorism

검색결과 4건 처리시간 0.018초

기업 보안을 위한 융합보안 컴플라이언스 관리 모델에 관한 연구 (A Study on A Model of Convergence Security Compliance Management for Business Security)

  • 김민수
    • 융합보안논문지
    • /
    • 제16권5호
    • /
    • pp.81-86
    • /
    • 2016
  • 최근 지속적으로 발생하는 보안위협은 기업의 비즈니스 연속성을 저해할 뿐만 아니라 사회적 국가적 차원에서도 그 심각성이 높아지고 있는 실정이다. 이러한 보안위협은 기업과 국가 간 경쟁력이 심화 되면서 기업의 지적 재산권 침해가 지속적으로 증가함에 따라, 기업들은 다양한 IT 컴플라이언스(compliance) 법제들에 대하여 의무적 준수와 더불어 엄격한 법적 책임을 부담하여야 한다. 따라서 본 연구에서는 기업의 능동적인 IT 컴플라이언스 활용을 위해 머신러닝(machine learning) 기술을 이용한 융합보안 컴플라이언스 관리 모델을 제안하고자 한다.

SVM을 이용한 고속철도 궤도틀림 식별에 관한 연구 (A Study on Identification of Track Irregularity of High Speed Railway Track Using an SVM)

  • 김기동;황순현
    • 산업기술연구
    • /
    • 제33권A호
    • /
    • pp.31-39
    • /
    • 2013
  • There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.

  • PDF

인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구 (A Study on the Win-Loss Prediction Analysis of Korean Professional Baseball by Artificial Intelligence Model)

  • 김태훈;임성원;고진광;이재학
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.77-84
    • /
    • 2020
  • 본 연구에서는 인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구를 했다. 승리할 팀과 해당 팀의 최종 리그 순위를 예측했고, 사용자의 편의를 위해 웹사이트도 구축했다. 각 1·3·5이닝 별로 가장 정확도가 높으면서도 오차가 적은 모델을 최적 모델로 선정해 승·패 결과를 예측했고, 이를 토대로 순위표를 작성했다. 결과표는 2020년 개막인 5월 5일부터 8월 30일까지의 예측 결과를 바탕으로 작성했다. 기아타이거즈가 아닌 다른 구단끼리의 경기는 실제 결과를 사용했다. 머신러닝 모델은 KNN과 AdaBoost가 최적 모델로 선정되었으며, 실제 순위와 비교해 본 결과, 경기가 진행될수록, 예측 결과의 순위 오차가 점점 작아지는 것을 확인했다. 딥러닝 모델은 89%의 정확도를 기록했고, 머신러닝 모델과 마찬가지로 경기를 진행할수록 예측 결과 순위 오차가 작아지는 것을 확인했다. 실험 결과는 한국 프로야구 승·패 결과 예측뿐 아니라 다양한 분야에서 사용할 수 있을 것으로 사료된다. 방송국에서 야구 경기를 중계하는 중 이닝별로 인공지능 알고리즘이 예상한 승·패 여부를 중계화면에 띄울 수 있다. 시청자들에게 새로운 흥미를 일으킬 수 있을 것이고, 나아가 구단의 감독들이 이닝마다 데이터를 분석해 경기 중 유동적으로 승리하기 위한 전략을 세울 수 있을 것으로 기대된다.