• Title/Summary/Keyword: Machine Learning & Training

Search Result 796, Processing Time 0.025 seconds

Effect of Training Sequence Control in On-line Learning for Multilayer Perceptron (다계층 퍼셉트론의 온라인 학습에서 학습 순서 제어의 효과)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.491-502
    • /
    • 2010
  • When human beings acquire and develop knowledge through education, their prior knowledge influences the next learning process. As this is a fact that should be considered in machine learning, we need to examine the effects of controlling the order of training sequence on machine learning. In this research, the role of the supervisor is extended to control the order of training samples, in addition to just instructing the target values for classification problems. The supervisor sequences the training examples categorized by SOM to the learning model which in this case is MLP. The proposed method is distinguished in that it selects the most instructive example from categories formed by SOM to assist the learning progress, while others use SOM only as a preprocessing method for training samples. The result shows that the method is effective in terms of the number of samples used and time taken in training.

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

Improvement of Accuracy of Decision Tree By Reprocessing (재처리를 통한 결정트리의 정확도 개선)

  • Lee, Gye-Sung
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.593-598
    • /
    • 2003
  • Machine learning organizes knowledge for efficient and accurate reuse. This paper is concerned with methods of concept learning from examples, which glean knowledge from a training set of preclassified ‘objects’. Ideally, training facilitates classification of novel, previously unseen objects. However, every learning system relies on processing and representation assumptions that may be detrimental under certain circumstances. We explore the biases of a well-known learning system, ID3, review improvements, and introduce some improvements of our own, each designed to yield accurate and pedagogically sound classification.

Correlation between Vocational Training Evaluation Data and Employment Outcomes: A Study on Prediction Approaches through Machine Learning Models (직업훈련생 평가 데이터와 취업 결과의 상관관계: 머신러닝 모델을 통한 예측 방안 연구)

  • Jae-Sung Chun;Il-Young Moon
    • Journal of Practical Engineering Education
    • /
    • v.16 no.3_spc
    • /
    • pp.291-296
    • /
    • 2024
  • This study analyzed various machine learning models that predict employment outcomes after vocational training using pre-assessment data of disabled vocational trainees. The study selected and utilized the most appropriate machine learning models based on a data set containing various personal characteristics, including trainees' gender, age, and type of disability. Through this analysis, the goal is to improve the employment rate and job satisfaction of disabled trainees using only pre-assessment data. As a result, it presents a universal approach that can be applied not only to people with disabilities, but also to vocational trainees from a variety of backgrounds. This is expected to make an important contribution to the development and implementation of tailored vocational training programs, ultimately helping to achieve better employment outcomes and job satisfaction.

A Study on Reliability Analysis According to the Number of Training Data and the Number of Training (훈련 데이터 개수와 훈련 횟수에 따른 과도학습과 신뢰도 분석에 대한 연구)

  • Kim, Sung Hyeock;Oh, Sang Jin;Yoon, Geun Young;Kim, Wan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the Gradient Descent Optimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock;Vu, Quang-Viet;Papazafeiropoulos, George;Kong, Zhengyi;Truong, Viet-Hung
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.

A novel visual tracking system with adaptive incremental extreme learning machine

  • Wang, Zhihui;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.451-465
    • /
    • 2017
  • This paper presents a novel discriminative visual tracking algorithm with an adaptive incremental extreme learning machine. The parameters for an adaptive incremental extreme learning machine are initialized at the first frame with a target that is manually assigned. At each frame, the training samples are collected and random Haar-like features are extracted. The proposed tracker updates the overall output weights for each frame, and the updated tracker is used to estimate the new location of the target in the next frame. The adaptive learning rate for the update of the overall output weights is estimated by using the confidence of the predicted target location at the current frame. Our experimental results indicate that the proposed tracker can manage various difficulties and can achieve better performance than other state-of-the-art trackers.

A Feasibility Study on the Improvement of Diagnostic Accuracy for Energy-selective Digital Mammography using Machine Learning (머신러닝을 이용한 에너지 선택적 유방촬영의 진단 정확도 향상에 관한 연구)

  • Eom, Jisoo;Lee, Seungwan;Kim, Burnyoung
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Although digital mammography is a representative method for breast cancer detection. It has a limitation in detecting and classifying breast tumor due to superimposed structures. Machine learning, which is a part of artificial intelligence fields, is a method for analysing a large amount of data using complex algorithms, recognizing patterns and making prediction. In this study, we proposed a technique to improve the diagnostic accuracy of energy-selective mammography by training data using the machine learning algorithm and using dual-energy measurements. A dual-energy images obtained from a photon-counting detector were used for the input data of machine learning algorithms, and we analyzed the accuracy of predicted tumor thickness for verifying the machine learning algorithms. The results showed that the classification accuracy of tumor thickness was above 95% and was improved with an increase of imput data. Therefore, we expect that the diagnostic accuracy of energy-selective mammography can be improved by using machine learning.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.