• 제목/요약/키워드: Machine Fault Diagnosis

검색결과 216건 처리시간 0.025초

스마트 팩토리에서 머신 러닝 기반 설비 장애진단 예측 시스템 (A Predictive System for Equipment Fault Diagnosis based on Machine Learning in Smart Factory)

  • 조재형;이재오
    • KNOM Review
    • /
    • 제24권1호
    • /
    • pp.13-19
    • /
    • 2021
  • 최근 산업 분야에서는 공장 자동화 뿐만 아니라 장애 진단/예측을 통해 고장/사고를 사전에 방지하여 생산량을 극대화하기 위한 연구가 진행되고 있으며, 이를 구성하기 위해 많은 양의 데이터 축적을 위한 클라우드 기술, 데이터 처리를 위한 빅 데이터 기술, 그리고 데이터 분석을 쉽게 진행하기 위한 AI(Artificial Intelligence)기술이 도입되고 있다. 또한 최근에는 장애 진단/예측의 발전으로 인해 설비 유지보수(PM: Productive Maintenance) 방식도 정기적으로 설비를 유지보수 하는 방식인 TBM(Time Based Maintenance)에서 설비 상태에 따라 유지보수 하는 방식인 CBM(Condition Based Maintenance)을 조합하는 방식으로 발전하고 있다. CBM 기반 유지보수를 수행하기 위하여 설비의 상태(condition)의 정의와 분석이 필요하다. 따라서 본 논문에서는 머신 러닝(Machine Learning) 기반의 장애 진단을 위한 시스템 및 데이터 모델(Data Model)을 제안하며, 이를 기반으로 장애를 사전 예측한 사례를 제시하고자 한다.

공작기계에서의 원격고장진단 시스템 개발에 관한 연구 (A Study on the Development of Remote Fault Diagnosis and Maintenance System for Machine Tool)

  • 현웅근;신동수;박인준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.708-713
    • /
    • 1997
  • A remote data communication system for monitoring of NC machine fault diagnosis and status is developed. This system communicates with host PC by using dial-up communication method on PSTN. The developed system consists of (1)remote communication module among NC's and host PC using PSTN, (2) 8 channels analog data sensing module, (3) digital I/O module for control of NC machine, (4) communication module between NC machine and remote data communication system using RS-232c, and (5) Software man-machine interface. This system may be applied for remote sensing of the status in Fms. To show the veridity of the developed system, several examples are illustrated.

  • PDF

가속도 신호의 주파수 분석에 기반한 종이용기 성형기 구동축 고장진단 요소기술 개발 (Development of Fault Diagnosis Technology Based on Spectrum Analysis of Acceleration Signal for Paper Cup Forming Machine)

  • 장재호;하창근;주백석;박준영
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.1-8
    • /
    • 2016
  • As demand for paper cups markedly increases, this has brought about a requirement to develop fast paper cup forming machines. However, the fast manufacturing speed of these machines causes faults to occur more frequently in the final product. To reduce the possibility of producing faulty products, it is necessary to develop technologies to monitor the manufacturing process and diagnose the machine status. In this research, we selected the main driving axis of the forming machine for fault diagnosis. We searched the states of rotational elements related to the driving axis and suggested a fault diagnostic system based on spectrum analysis consisting of a real-time data acquisition device, accelerometers, and a diagnosis algorithm. To evaluate the developed fault diagnostic system, we performed experiments using a test station which resembles the actual paper cup forming machine. As a result, we were able to confirm that the proposed system was sufficiently feasible to diagnose any abnormalities in the operation of the paper cup forming machine.

통계적 분석기법을 이용한 디젤기관의 고장진단 방법에 관한 연구 (The Fault Diagnosis Method of Diesel Engines Using a Statistical Analysis Method)

  • 김영일;오현경;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.247-252
    • /
    • 2006
  • Almost ship monitoring systems are event driven alarm system which warn only when the measurement value is over or under set point. These kinds of system cannot warn until signal is growing to abnormal state that the signal is over or under the set point. therefore cannot play a role for preventive maintenance system. This paper proposes fault diagnosis method which is able to diagnose and forecast the fault from present operating condition by analyzing monitored signals with present ship monitoring system without any additional sensors. By analyzing the data with high correlation coefficient(CC), correlation level of interactive data can be defined. Knowledge base of abnormal detection can be built by referring level of CC(Fault Detection CC. FDCC) to detect abnormal data among monitored data from monitoring system and knowledge base of diagnosis built by referring CC among interactive data for related machine each other to diagnose fault part.

통계적분석기법을 이용한 디젤기관의 고장진단 방법에 관한 연구 (The Fault Diagnosis Method of Diesel Engines Using a Statistical Analysis Method)

  • 김영일;오현경;천행춘;유영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.281-286
    • /
    • 2005
  • Almost ship monitoring systems are event driven alarm system which warn only when the measurement value is over or under set point. These kinds of system cannot warn while signal is growing to abnormal state until the signal is over or under the set point and cannot play a role for preventive maintenance system. This paper proposes fault diagnosis method which is able to diagnose and forecast the fault from present operating condition by analyzing monitored signals with present ship monitoring system without additional sensors. By analyzing this data having high correlation coefficient(CC), correlation level of interactive data can be understood. Knowledge base of abnormal detection can be built by referring level of CC(Fault Detection CC, FDCC) to detect abnormal data among monitored data from monitoring system and knowledge base of diagnosis built by referring CC among interactive data for related machine each other to diagnose fault part.

  • PDF

Expert System을 이용한 전단기 고장 및 안전진단 시스템 구축 (Development of Shearing Machine Fault & Safety Diagnosis System Using Expert System)

  • 강경식;나승훈;정영득;박재현
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.475-483
    • /
    • 1997
  • Industrial safety management program consists of three part which is education, technology and control. The effectiveness of industrial safety control program rely on the ability of controlling hardware system, technology and software, training and management. How to design and develop the sharing machine fault and safety diagnosis system using expert system technique is presented on this paper.

  • PDF

Fault diagnostic system for rotating machine based on Wavelet packet transform and Elman neural network

  • Youk, Yui-su;Zhang, Cong-Yi;Kim, Sung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.178-184
    • /
    • 2009
  • An efficient fault diagnosis system is needed for industry because it can optimize the resources management and improve the performance of the system. In this study, a fault diagnostic system is proposed for rotating machine using wavelet packet transform (WPT) and elman neural network (ENN) techniques. In most fault diagnosis for mechanical systems, WPT is a well-known signal processing technique for fault detection and identification. In previous work, WPT can improve the continuous wavelet transform (CWT) used over a longer computing time and huge operand. It can also solve the frequency-band disagreement by discrete wavelet transform (DWT) only breaking up the approximation version. In the experimental work, the extracted features from the WPT are used as inputs in an Elman neural network. The results show that the scheme can reliably diagnose four different conditions and can be considered as an improvement of previous works in this field.

신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법 (Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System)

  • 한형섭;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines

  • Yang Bo-Suk;Han Tian;Hwang Won-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.846-859
    • /
    • 2005
  • Support vector machines (SVMs) have become one of the most popular approaches to learning from examples and have many potential applications in science and engineering. However, their applications in fault diagnosis of rotating machinery are rather limited. Most of the published papers focus on some special fault diagnoses. This study covers the overall diagnosis procedures on most of the faults experienced in rotating machinery and examines the performance of different SVMs strategies. The excellent characteristics of SVMs are demonstrated by comparing the results obtained by artificial neural networks (ANNs) using vibration signals of a fault simulator.