• Title/Summary/Keyword: Machine Accuracy Simulation

Search Result 208, Processing Time 0.025 seconds

Development and Validation of Digital Twin for Analysis of Plant Factory Airflow (식물공장 기류해석을 위한 디지털트윈 개발 및 실증)

  • Jeong, Jin-Lip;Won, Bo-Young;Yoo, Ho-Dong;Kim, Tag Gon;Kang, Dae-Hyun;Hong, Kyung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • As one of the alternatives to solve the problem of unstable food supply and demand imbalance caused by abnormal climate change, the need for plant factories is increasing. Airflow in plant factory is recognized as one of important factor of plant which influence transpiration and heat transfer. On the other hand, Digital Twin (DT) is getting attention as a means of providing various services that are impossible only with the real system by replicating the real system in the virtual world. This study aimed to develop a digital twin model for airflow prediction that can predict airflow in various situations by applying the concept of digital twin to a plant factory in operation. To this end, first, the mathematical formalism of the digital twin model for airflow analysis in plant factories is presented, and based on this, the information necessary for airflow prediction modeling of a plant factory in operation is specified. Then, the shape of the plant factory is implemented in CAD and the DT model is developed by combining the computational fluid dynamics (CFD) components for airflow behavior analysis. Finally, the DT model for high-accuracy airflow prediction is completed through the validation of the model and the machine learning-based calibration process by comparing the simulation analysis result of the DT model with the actual airflow value collected from the plant factory.

A Study on Calculating Inductance Characteristics of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 인덕터스 산정에 관한 연구)

  • 최경호;김동희;노채균;김민희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.333-340
    • /
    • 2001
  • This paper presents a calculating method for inductance of the Switched Reluctance Motor(SRM) for torque characteristics and driving by analytical model. The torque generating characteristics of the SRM depend on the phase current and the inductance variation features, but Its nonlinear magnetic characteristics make it difficult to calculating inductance. Recently, The approaches for calculating inductance have taken vary from detailed finite element method(FEM) and Fitting method in magnetization curves using complex nonlinear magnetic circuit models. But those methods have not satisfactory approach for machine performance calculations, because of having a long time and remodeling for analyses, therefore thus an alternative approach is required. So it is suggested simply calculating method of the inductance based on designed data of machinery by analytical model in unaligned and aligned rotor. In order to prove the calculating, there are compare with analytical FEM. direct measurement, this method, and simulation. The compared result is shown to obtain good accuracy.

  • PDF

Deep Learning based BER Prediction Model in Underwater IoT Networks (딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델)

  • Byun, JungHun;Park, Jin Hoon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.41-48
    • /
    • 2020
  • The sensor nodes in underwater IoT networks have practical limitations in power supply. Thus, the reduction of power consumption is one of the most important issues in underwater environments. In this regard, AMC(Adaptive Modulation and Coding) techniques are used by using the relation between SNR and BER. However, according to our hands-on experience, we observed that the relation between SNR and BER is not that tight in underwater environments. Therefore, we propose a deep learning based MLP classification model to reflect multiple underwater channel parameters at the same time. It correctly predicts BER with a high accuracy of 85.2%. The proposed model can choose the best parameters to have the highest throughput. Simulation results show that the throughput can be enhanced by 4.4 times higher than the conventionally measured results.

Performance Analysis of Vision-based Positioning Assistance Algorithm (비전 기반 측위 보조 알고리즘의 성능 분석)

  • Park, Jong Soo;Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.101-108
    • /
    • 2019
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, developed a vision-based positioning assistant algorithm to estimate the distance to the object from stereo images. In addition, GNSS/on-board vehicle sensor/vision based positioning algorithm is developed by combining vision based positioning algorithm with existing positioning algorithm. For the performance analysis, the velocity calculated from the actual driving test was used for the navigation solution correction, simulation tests were performed to analyse the effects of velocity precision. As a result of analysis, it is confirmed that about 4% of position accuracy is improved when vision information is added compared to existing GNSS/on-board based positioning algorithm.

Adaptively selected autocorrelation structure-based Kriging metamodel for slope reliability analysis

  • Li, Jing-Ze;Zhang, Shao-He;Liu, Lei-Lei;Wu, Jing-Jing;Cheng, Yung-Ming
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.187-199
    • /
    • 2022
  • Kriging metamodel, as a flexible machine learning method for approximating deterministic analysis models of an engineering system, has been widely used for efficiently estimating slope reliability in recent years. However, the autocorrelation function (ACF), a key input to Kriging that affects the accuracy of reliability estimation, is usually selected based on empiricism. This paper proposes an adaption of the Kriging method, named as Genetic Algorithm optimized Whittle-Matérn Kriging (GAWMK), for addressing this issue. The non-classical two-parameter Whittle-Matérn (WM) function, which can represent different ACFs in the Matérn family by controlling a smoothness parameter, is adopted in GAWMK to avoid subjectively selecting ACFs. The genetic algorithm is used to optimize the WM model to adaptively select the optimal autocorrelation structure of the GAWMK model. Monte Carlo simulation is then performed based on GAWMK for a subsequent slope reliability analysis. Applications to one explicit analytical example and two slope examples are presented to illustrate and validate the proposed method. It is found that reliability results estimated by the Kriging models using randomly chosen ACFs might be biased. The proposed method performs reasonably well in slope reliability estimation.

RIDS: Random Forest-Based Intrusion Detection System for In-Vehicle Network (RIDS: 랜덤 포레스트 기반 차량 내 네트워크 칩입 탐지 시스템)

  • Daegi, Lee;Changseon, Han;Seongsoo, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2022
  • This paper proposes RIDS (Random Forest-Based Intrusion Detection), which is an intrusion detection system to detect hacking attack based on random forest. RIDS detects three typical attacks i.e. DoS (Denial of service) attack, fuzzing attack, and spoofing attack. It detects hacking attack based on four parameters, i.e. time interval between data frames, its deviation, Hamming distance between payloads, and its diviation. RIDS was designed in memory-centric architecture and node information is stored in memories. It was designed in scalable architecture where DoS attack, fuzzing attack, and spoofing attack can be all detected by adjusting number and depth of trees. Simulation results show that RIDS has 0.9835 accuracy and 0.9545 F1 score and it can detect three attack types effectively.

Prediction of Traffic Speed in a Container Terminal Using Yard Tractor Operation Data (내부트럭 운영 정보를 이용한 컨테이너 터미널 내 교통 속도예측)

  • Kim, Taekwang;Heo, Gyoungyoung;Lee, Hoon;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • An important operational goal of a container terminal is to maximize the efficiency of the operation of quay cranes (QCs) that load and/or unload containers onto and from vessels. While the maximization of the efficiency of the QC operation requires minimizing the delay of yard tractors (YT) that transport containers between the storage yard and QCs, the delay is often inevitable because of traffic congestion. In this paper, we propose a method for learning a model that predicts traffic speed in a terminal using only YT operation data, even though the YT traffic is mixed with that of external trucks. Without any information on external truck traffic, we could still make a reasonable traffic forecast because the YT operation data contains information on the YT routes in the near future. The results of simulation experiments showed that the model learned by the proposed method could predict traffic speed with significant accuracy.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

Comparison of ANN model's prediction performance according to the level of data uncertainty in water distribution network (상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교)

  • Jang, Hyewoon;Jung, Donghwi;Jun, Sanghoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1295-1303
    • /
    • 2022
  • As the role of water distribution networks (WDNs) becomes more important, identifying abnormal events (e.g., pipe burst) rapidly and accurately is required. Since existing approaches such as field equipment-based detection methods have several limitations, model-based methods (e.g., machine learning based detection model) that identify abnormal events using hydraulic simulation models have been developed. However, no previous work has examined the impact of data uncertainties on the results. Thus, this study compares the effects of measurement error-induced pressure data uncertainty in WDNs. An artificial neural network (ANN) is used to predict nodal pressures and measurement errors are generated by using cumulative density function inverse sampling method that follows Gaussian distribution. Total of nine conditions (3 input datasets × 3 output datasets) are considered in the ANN model to investigate the impact of measurement error size on the prediction results. The results have shown that higher data uncertainty decreased ANN model's prediction accuracy. Also, the measurement error of output data had more impact on the model performance than input data that for a same measurement error size on the input and output data, the prediction accuracy was 72.25% and 38.61%, respectively. Thus, to increase ANN models prediction performance, reducing the magnitude of measurement errors of the output pressure node is considered to be more important than input node.