• 제목/요약/키워드: Machine Accuracy Simulation

검색결과 208건 처리시간 0.024초

병렬기구 공직기계의 머신시뮬레이션 및 가공정밀도 평가 (The Evaluation of Machining Accuracy and the Machine Simulation for Parallel Kinematic Machine Tool(PKMT))

  • 신혁;유한식;고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.41-47
    • /
    • 2009
  • This research deals with evaluation of machining accuracy for Parallel Kinematic Machine Tool(PKMT) applied parallel type robot system with high precision and stiffness. For this purpose, machine simulation is carried out to foreknow collision and interference between workpiece and tool. Furthermore, on the basis of machine simulation data, PKMT is manufactured. Machining accuracy such as cylindricity straightness, squareness, parallelism circularity, concentricity pitch error and yaw error, is measured by using coordinate measuring machine. Test piece for evaluation of machining accuracy is designed and manufactured under the standard of ISO 10791-7.

  • PDF

2차원 프로브에 의한 NC공작기계의 운동 정밀도 측정 -제2보 직선운동 정밀도 측정- (Measurement of Motion Accuracy by Two-dimensional Probe on NC Machine Tools -2nd Report, Measurement of the Linear Motion Accuracy-)

  • 전언찬;소산전중덕;제정신;각전윤일랑
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.15-21
    • /
    • 1997
  • This paper presented a linear motion accuracy by using two-dimensional probe with the master block and the square for NC machine tools. This measuring system could be measured motion error due to numerical control system. The results of measurement and simulation for motion error were similar, and so, this system had enough accuracy to measure a linear motion accuracy for NC machine tools. The experimental results are as follows. 1. This measuring system could be measured motion error due to mumerical control system. 2. The results of measurement and simulation for motion error were similar. 3. This measuring system had enough accuracy to measure a linear motion accuracy for NC machine tools.

  • PDF

기계장비 정밀도 시뮬레이션 기술 개발 (Development of an Accuracy Simulation Technology for Mechanical Machines)

  • 박천홍;황주호;이찬홍;송창규
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.259-264
    • /
    • 2011
  • Authors are carrying out a national project which develops an accuracy simulation technology of mechanical machines to predict the stiffness and accuracy of machine components or entire machine in the design stage. Analysis methods in this technology are generalized to achieve the wide applicability and to be utilized as a web based platform type. In this paper, outline of the project such as concept, aim and configuration is introduced. Contents of the research are also introduced, which are composed of four main research fields; structural dynamics, linear motion analysis, rotary motion analysis and control and vibration analysis. Finally, a future plan is presented which is made up with three stages for the advance toward an ultimate manufacturing tools.

직선운동 시스템의 정밀도 시뮬레이션 기술 (Accuracy Simulation of the Precision Linear Motion Systems)

  • 오정석;김경호;박천홍;정성종;이선규;김수진
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.275-284
    • /
    • 2011
  • The accuracy simulation technology of linear motion system is introduced in this paper. Motion errors and positioning errors are simulated using informations on the design parameters of elements of linear motion system. 5 Degree-of-freedom motion error analysis algorithm utilizing the transfer function method and positioning error analysis algorithm which are main frame of accuracy simulation are introduced. Simulated motion errors are compared with experimental results for verifying the effectiveness. Then, using the proposed algorithms, simulation is performed to investigate the effects of ballscrew and linear motor on the motion errors. Finally, the influence of feedback sensor position on the positioning error is also discussed.

초고속 이송 방식 3차원 Bending Machine 개발에 관한 연구 (A Study on the Development of a High Speed Feeding Type Three-Dimensional Bending Machine)

  • 임상헌;이춘만
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.91-98
    • /
    • 2005
  • This study has been focused on the development of a high speed feeding type three-dimensional bending machine. It is designed for manufacture of copper pipe for heat exchangers. For the purpose of design of the machine, analysis of bending process, structural analysis and reliability evaluation of the machine by a laser interferometer are carried out. The analysis is carried out by FEM simulation using commercial softwares, DEFORM, MARC and CATIA V5. In addition, the machine has attained high accuracy and repeatability. In order to improve the accuracy of this machine, the maximum speed, positioning accuracy and repeatability of feed are measured by the laser interferometer. The final results of analysis are applied to the design of a high speed feeding type three-dimensional bending machine and the machine is successfully developed.

기계장비의 구조 특성 예측 시뮬레이터 (Simulator of Accuracy Prediction for Developing Machine Structures)

  • 이찬홍;하태호;이재학;김양진
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

원추형상을 이용한 비구면 형상가공에 관한 연구 (A Study on Machining of Aspherical Surface using a cone.)

  • 이상민;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1348-1352
    • /
    • 2004
  • An aspherical lens in information technology has been increased in order to enhance the optical performances. There are two kinds of approaches to machine the aspherica surface is generally conducted by the diamond turning machine, precision grinding machine, and polishing machine. This technique, however, has a problem which needs an expensive and high precision machine in order to increase the surface roughness and the machining accuracy. In this paper, a machine, which is able to machine the aspherical surface, was developed to decrease the cost. Also, the machining of the aspherical surface using a cone was carried out experimentally in order to compare the experiment with the simulation. The results showed that the machining experiments of the aspherical surface by using the titled cone were in accordance with the simulation.

  • PDF

고신뢰 머시닝센터를 위한 열변위 보상 센서 설계기술 (Design of Thermal Displacement Compensation Sensor for High Reliability Machine Tools)

  • 김일해;장동영;박정훈;박성욱;심풍수
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.886-893
    • /
    • 2011
  • To increase the reliability and positional accuracy of a machine tool, a novel capacitive displacement sensor having a cylindrical shape is presented to measure the axial displacement of a machine tool spindle. Characteristics of the sensor were analyzed by numerical simulation. The sensor was built into a specific machine tool spindle and its performance was experimentally investigated. The accuracy of a thermal error compensation system of a machine tool can be enhanced greatly using proposed sensor.

EEG 신호 정확도 향상을 위한 시뮬레이션 소프트웨어 개발 (Development of Simulation Software for EEG Signal Accuracy Improvement)

  • 정해성;이상민;권장우
    • 재활복지공학회논문지
    • /
    • 제10권3호
    • /
    • pp.221-228
    • /
    • 2016
  • 본 논문에서는 EEG 신호 기반 기기 또는 소프트웨어를 사용하기 위해 사용자가 본인의 EEG 신호 정확도를 확인하고, 훈련을 통하여 자신의 EEG 신호 정확도를 향상시킬 수 있는 시뮬레이션 소프트웨어를 제안한다. 실험 데이터로는 풍경사진을 보며 편안한 상태에서 발생되는 신호와 수학문제를 풀며 집중 시에 발생되는 신호를 사용한다. 입력되는 EEG 신호는 독립 성분 분석(Independent Component Analysis, ICA)을 적용하여 잡음을 최소화하고 대역 통과 필터(Band Pass Filter)를 통하여 베타파(${\beta}$, 14-30Hz)만을 취득한다. 취득한 베타파 대역 데이터에서 제곱평균제곱근(Root Mean Square, RMS) 알고리즘을 통하여 특징 정보를 추출하고 지지 벡터 머신(Support Vector Machine, SVM)에 적용하여 분류한다. 분류된 결과는 사용자가 바로 확인할 수 있으며 훈련 전 피험자의 평균 정확도는 79.21%이었던 반면, 연속적인 훈련으로 최고 91.67%의 정확도를 보였다. 이처럼 본 논문에서 개발한 시뮬레이션 소프트웨어는 사용자가 직접 자신의 EEG 신호 정확도를 향상키기는 훈련을 통하여 정확도 향상이 가능하고, EEG 신호 기반으로 이루어진 BCI 시스템의 효율적인 사용을 기대할 수 있다.