• Title/Summary/Keyword: Mach-Zehnder interferometry

Search Result 10, Processing Time 0.022 seconds

A Fiberoptic Temperature Sensor Using Low-Coherence Light Source (가간섭성이 낮은 광원을 이용한 광섬유 온도 센서)

  • Kim, Gwang-Su;Lee, Hong-Sik;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.691-697
    • /
    • 2000
  • A fiberoptic sensor using a low-coherence SLD as a light source has been studied. The sensor system employing an intrinsic fiber Fabry-Peort interferometer as a sensing tip and a fiber Mach-Zehnder interferometer as a processing one, overcomes the ambiguous reading caused by the highly periodic natrue of conventional high-precision interferometric sensors and provides unambiguous identification of the desired phase among several candidates on the transfer function of an interferometric signal. A tentative application to the temperature sensor shows the potential that the fiberoptic sensor has a side-dynamic range of $0-900^{\circ}C$ as well as reasonable resolution higher than $0.1^{\circ}C$ without ambiguity. Due to the inherent property of the optical fiber itself and the intrinsic fiber Fabry-Perot interferometer, the proposed fiberoptic sensor will give obvious benefits when it is applied to harsh environments to monitor some physical parameters such as temperature, strain, pressure and vibration.

  • PDF

Dual Optical Encryption for Binary Data and Secret Key Using Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • In this paper, we propose a new dual optical encryption method for binary data and secret key based on 2-step phase-shifting digital holography for a cryptographic system. Schematically, the proposed optical setup contains two Mach-Zehnder type interferometers. The inner interferometer is used for encrypting the secret key with the common key, while the outer interferometer is used for encrypting the binary data with the same secret key. 2-step phase-shifting digital holograms, which result in the encrypted data, are acquired by moving the PZT mirror with phase step of 0 or ${\pi}/2$ in the reference beam path of the Mach-Zehnder type interferometer. The digital hologram with the encrypted information is a Fourier transform hologram and is recorded on CCD with 256 gray level quantized intensities. Computer experiments show the results to be encryption and decryption carried out with the proposed method. The decryption of binary secret key image and data image is performed successfully.

Visualization and Measurement of Fluids with Real-time Holographic Interferometry (실시간 홀로그래픽 간섭법을 이용한 유체의 가시화)

  • Eom, Chul;Kang, Young-June;Kim, Dong-Woo;Ryu, Weon-Jae;An, Jung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.539-544
    • /
    • 2001
  • The holographic measurement techniques can be applied to various industrial fields such as automobile, airplane, construction, electronics, medical, mechanics and physics. The visualization of fluids is very important in aerodynamics, heat transfer and stress analysis. There are classically optical methods such as shadowgraph, schlieren method, and Mach-Zehnder interferometry for visualizing the fluid flow phenomena. But, it is difficult to understand the continuous state of fluids well in those methods. In this study, the real-time holographic interferometer with high-speed camera is applied to the flow visualization. In addition, collimated laser beam and rotating wedge are used for recording and formation of carrier fringes, respectively.

  • PDF

Optical Image Encryption Based on Characteristics of Square Law Detector (세기검출기를 이용한 광 영상 암호화)

  • Lee, Eung-Dae;Park, Se-Jun;Lee, Ha-Un;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.34-40
    • /
    • 2002
  • In this paper, a new encryption method for a binary image using Phase modulation and Fourier transform is proposed. For decryption we use the characteristics of square law detector. In encryption process, a key image is obtained by phase modulation of 256 level random pattern and its Fourier transformation, and input image is encrypted by Fourier transforming the multiplication of the phase modulated random pattern and phase modulated input image. The encrypted image and key image have only phase information, so they can not be copied or counterfeited and the original image can not be decrypted without the key image. To reconstruct the original image, each phase mask of the key image and the encrypted image must be placed on each path of the Mach-Zehnder interferometry with Fourier transform lens and the output image is obtained in the form of intensity in the CCD(Charge Coupled Device) camera. The real-time decryption is possible in the proposed system by use of a LCD as a phase modulator and a CCD camera as an intensity detector. The proposed method shows a good performance in the computer simulation and optical experiment as an encryption scheme.

Measurements of Magnetostriction of Metallic Glass Ribbons by Fiber-Optic Interferometry

  • Lee, Kyung-Shik;Park, Moo-Youn;Kim, Tae-Kyun;Kim, Min-Hyoung;Kang, Hyun-Seo
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.167-170
    • /
    • 1997
  • Magnetostrictions of metallic glass ribbons were measured by fiber-optic Mach-Zehnder interferometry. The saturation magnetostrictions measured here are accurate to within 10%. For accurate measurements the fibers in the ribbons were uncoated, the ribbons were flattened before bonding, and two passes of fiber in the sensing arm were bonded to a single layer metallic glass ribbon at the ends only. Various factors affecting the accuracy of the measurements were also discussed.

  • PDF

2-step Phase-shifting Digital Holographic Optical Encryption and Error Analysis

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.244-251
    • /
    • 2011
  • We propose a new 2-step phase-shifting digital holographic optical encryption technique and analyze tolerance error for this cipher system. 2-step phase-shifting digital holograms are acquired by moving the PZT mirror with phase step of 0 or ${\pi}$/2 in the reference beam path of the Mach-Zehnder type interferometer. Digital hologram with the encrypted information is Fourier transform hologram and is recorded on CCD camera with 256 gray-level quantized intensities. The decryption performance of binary bit data and image data is analyzed by considering error factors. One of the most important errors is quantization error in detecting the digital hologram intensity on CCD. The more the number of quantization error pixels and the variation of gray-level increase, the more the number of error bits increases for decryption. Computer experiments show the results to be carried out encryption and decryption with the proposed method and the graph to analyze the tolerance of the quantization error in the system.

Diagnosis for Degradation of Transformer Oil by an Optical Fiber Sensor (광섬유 센서를 이용한 변압기 절연유의 열화 진단)

  • Yi, Sue-Muk;Kim, Tae-Young;Suh, Kwang-S.;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1563-1565
    • /
    • 2000
  • This paper presents the preliminary results on the application of optical fiber sensor(OFS) for the diagnosis of degradation in the transformer oil. An OFS system using a Mach-Zehnder interferometry technique was built to detect attenuation of acoustic signal produced by discharging. With increasing the number of discharging in the insulation oil, the attenuation of acoustic signal became greater. A strong correlation between electrical and acoustic signal intensities from discharge generated in the transformer oil was confirmed by the results reported here.

  • PDF

2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.354-364
    • /
    • 2012
  • In this paper, a new 2-step quadrature phase-shifting digital holographic optical encryption method using orthogonal polarization is proposed and tolerance errors for this method are analyzed. Unlike the conventional technique using a PZT mirror, the proposed optical setup comprises two input and output polarizers, and one ${\lambda}$/4-plate retarder. This method makes it easier to get a phase shift of ${\pi}$/2 without using a mechanically driven PZT device for phase-shifting and it simplifies the 2-step phase-shifting Mach-Zehnder interferometer setup for optical encryption. The decryption performance and tolerance error analysis for the proposed method are presented. Computer experiments show that the proposed method is an alternate candidate for 2-step quadrature phase-shifting digital holographic optical encryption applications.

Experimental Study of Two-step Phase-shifting Digital Holography based on the Calculated Intensity of a Reference Wave

  • Li, Jun;Pan, Yang Yang;Li, Jiao sheng;Li, Rong;Zheng, Tao
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.230-235
    • /
    • 2014
  • Two-step quadrature phase-shifting digital holography based on the calculated intensity of a reference wave is proposed. In the Mach-Zehnder interferometer (MZI) architecture, the method only records two quadrature-phase holograms, without reference-wave intensity or object-wave intensity measurement, to perform object recoding and reconstruction. When the reference-wave intensity is calculated from the 2D correlation coefficient (CC) method that we presented, the clear reconstruction image can be obtained by some specific algorithm. Its feasibility and validity were verified by a series of experiments with 2D objects and 3D objects. The presented method will be widely used in real-time or dynamic digital holography applications.

Visualization of Plasma Produced in a Laser Beam and Gas Jet Interaction (레이저와 질소가스 상호충돌로부터 발생되는 플라스마 가시화)

  • Kim Jong-Uk;Kim Chang-Bum;Kim Guang-Hoon;Lee Hae-June;Suk Hy-Yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • In the current study, characteristics of the laser-induced plasma were investigated in a gas filled chamber or in a gas jet by using a relatively low intensity laser $(I\;\leq\;5\;\times\;10^{12}\;W/cm^2)$. Temporal evolutions of the produced plasma were measured using the shadow visualization and the shock wave propagation as well as the electron density profiles in the plasma channel was measured using the Mach-Zehnder interferometry. Experimental results such as the structure of the produced plasma, shock propagation speed $(V_s)$, electron density profiles $(n_e)$, and the electron temperature $(T_e)$ are discussed in this study. Since the diagnostic laser pulse occurs over short time intervals compared to the hydrodynamic time scales of expanding plasma or a gas jet, all the transient motion occurring during the measurement is assumed to be essentially frozen. Therefore, temporally well-resolved quantitative measurements were possible in this study.

  • PDF