• Title/Summary/Keyword: Mach Number

Search Result 677, Processing Time 0.028 seconds

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Study of the Shock Wave Propagating through a Branched Pipe Bend (분지관을 전파하는 약한 충격파에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Szwaba Ryszard;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.165-168
    • /
    • 2002
  • This paper describes the dynamics of the weak shock wave propagating inside some kinds of branched pipe bends. Computations are carried out by solving the two-dimensional, compressible, unsteady Euler Equations. The second-order TVD(Total Variation Diminishing) scheme is employed to discretize the governing equations. For computations, two types of branched pipe($90^{\circ}$ branch,$45^{\circ}$ branch) with a diameter of D are used. The incident normal shock wave is assumed at D upstream of the pipe bend entrance, and its Mach number is changed between 1.1 and 2.4. The flow fields are numerically visualized by using the pressure contours and computed schlieren images. The comparison with the experimental data performed for the purpose of validation of computational work. Reflection and diffraction of the propagating shock wave are clarified. The present computations predicted the experimented flow field with a good accuracy.

  • PDF

Study of The Unsteady Weak Shock Propagating through a Pipe Bend (곡관 내부를 전파하는 약한 비정상 충격파에 관한 연구)

  • Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.456-461
    • /
    • 2001
  • This paper depicts the weak shock wave propagating inside some kinds of pipe bends. Computational work is to solve the two-dimensional, compressible, unsteady Euler Equations. The second-order TVD scheme is employed to discretize the governing equations. For the computations, the incident normal shock wave is assumed at the entrance of the pipe bend, and its Mach number is changed between 1.1 and 1.7. The turning angle and radius of the curvature of the pipe bend are changed to investigate the effects on the shock wave structure. The present computational results clearly show the shock wave reflection and diffraction occurring in the pipe bend. In particular, the vortex generation, which occurs at the edge of the bend, and its shedding mechanism are discussed in details.

  • PDF

Self-Noise Prediction from Helicopter Rotor Blade (헬리콥터 로터 블레이드의 자려소음 예측)

  • Kim, Hyo-Young;Ryu, Ki-Wahn
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-78
    • /
    • 2007
  • Self-noise from the rotor blade of the UH-1H Helicopter is obtained numerically by using the Brooks' empirical noise model. All of the five noise sources are compared with each other in frequency domain. From the calculated results the bluntness noise reveals dominant noise sources at small angel of attack, whereas the separation noise shows main noise term with gradually increasing angel of attack. From the results of two different tip Mach numbers with the change of angel of attack, the OASPLs at M = 0.8 show about 15dB larger than those at M = 0.4.

  • PDF

Multiple Unstable Modes in the Reacting Mixing Layer (반응혼합층의 복수 불안정성 모드)

  • Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.616-623
    • /
    • 1996
  • This paper investigates the linear stability of reacting mixing layers with special emphasis on the existence of multiple unstable modes. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. For the incompressible reacintg mixing layer with variable density. A necessary condition for instability has been derived. The condition requires that the angular momentum, not the vorticity, to have a maximum in the flow domain. New inflectional modes of instability are found to exist in the outer part of the mixing layer. For the compressible reacting mixing layer, supersonic unstable modes may exist in the abscence of a generalized inflection point. The outer modes at high Mach numbers in the reacting mixing layer are continuations of the inflectional modes of low Mach number flows. However, the generalized inflection point is less important at supersonic flows.

Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section (비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구)

  • Shin, Hyun-Dong;Kweon, Yong-Hun;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

Transonic flow past a Whitcomb airfoil with a deflected aileron

  • Kuzmin, Alexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.210-214
    • /
    • 2013
  • The sensitivity of transonic flow past a Whitcomb airfoil to deflections of an aileron is studied at free-stream Mach numbers from 0.81 to 0.86 and vanishing or negative angles of attack. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver using the $k-{\omega}$ SST turbulence model. The numerical study demonstrates the existence of narrow bands of the Mach number and aileron deflection angles that admit abrupt changes of the lift coefficient at small perturbations. In addition, computations reveal free-stream conditions in which the lift coefficient is independent of aileron deflections of up to 5 degrees. The anomalous behavior of the lift is explained by interplay of local supersonic regions on the airfoil. Both stationary and impulse changes of the aileron position are considered.

Several factors affect density and magnetic field correlation

  • Yoon, Heesun;Cho, Jungyeon;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2016
  • Turbulent motions produce density and magnetic field fluctuations. Correlation between density and magnetic field fluctuations are important for interpretation of observations, such as the rotation measure (RM) and dispersion measure (DM). We study the several factors that can affect the correlation between two. In particular, we numerically investigate how the correlation time of driving affects the correlation between density and magnetic field. We perform compressible MHD turbulence simulations at different sonic Mach number and consider two different driving schemes - continuously changing driving and delta-correlated driving. The continuously changing driving results in strong anti-correlation between density and magnetic field when sonic and Alfvenic Mach numbers are similar unity. The delta-correlated driving produces virtually no correlation between two fields.

  • PDF

Numerical simulations of convergent-divergent nozzle and straight cylindrical supersonic diffuser

  • Mehta, R.C.;Natarajan, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • The flowfields inside a contour and a conical nozzle exhausting into a straight cylindrical supersonic diffuser are computed by solving numerically axisymmetric turbulent compressible Navier-Stokes equations for stagnation to ambient pressure ratios in the range 20 to 34. The diffuser inlet-to-nozzle throat area ratio and exit-to-throat area ratio are 21.77, and length-to-diameter ratio of the diffuser is 5. The flow characteristics of the conical and contour nozzle are compared with the help of velocity vector and Mach contour plots. The variations of Mach number along the centre line and wall of the conical nozzle, contour nozzle and the straight supersonic diffuser indicate the location of the shock and flow characteristics. The main aim of the present analysis is to delineate the flowfields of conical and contour nozzles operating under identical conditions and exhausting into a straight cylindrical supersonic diffuser.

The Phase-sensitivity of a Mach-Zehnder Interferometer for Coherent Light

  • Shin, Jong-Tae;Kim, Heo-Noh;Park, Goo-Dong;Kim, Tae-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • We have studied the sensitivity of four different phase shift measurement schemes with a Mach-Zehnder interferometer. The input light is considered to be in a coherent state and the detectors are assumed to be ideal with the quantum efficiency of unity. It is shown by direct calculation of the operators corresponding to the measurement schemes that the uncertainty of the phase-shift measurement is limited to the classical one $\frac{1}{\sqrt{m}}$(m is the average number of the photons in the input state) regardless of the phase-shift measurement schemes.