• Title/Summary/Keyword: MWF

Search Result 41, Processing Time 0.033 seconds

Analysis on Chemical Ingredients with Anti-microbial Activity in Water-based Metalworking Fluids

  • Park, Dong-Uk;Lee, Jong-Hang;Yoon, Chung-Sik;Lee, Kwon-Sup;Park, Deok-Mook
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.213-216
    • /
    • 2003
  • This study was conducted to estimate if the level of several chemical ingredients including alkanolamines or ethanolamines (EA) examined in the specific synthetic metalworking fluid (MWF) “A” can cause anti-microbial activity and health effect. Three water-based MWF products (“A”, “B”, and “C”) were studied every week for two months (from June 1, 2002 to July 30, 2002). Chemical ingredients such as formaldehyde, boron, EA, and copper were examined. In the sump where MWF “A” was used, not only the total level of EA, monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA), but also boron level were significantly higher than those of the other MWFs. ANOVA statistical tests indicated that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF A were significantly higher than those in other MWF types. Correlation tests also found that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF “A” are significantly correlated. We suggested the assumptions that excessive concentrations of EA, and borate at a high pH level, may cause anti-microbial resistance synergically, To demonstrate this assumption, additional study is needed to examine the relationship between the levels of microbes and excessive concentrations of EA, and borate at a high pH level.

  • PDF

Assessment guideline for the safe use of metalworking fluids - Focused on water-soluble metalworking fluids (기계가공 공정에서 금속가공유 관리에 대한 평가지침 -수용성 금속가공유를 중심으로-)

  • Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • This technical report was developed to suggest the guideline to assess the safe use and handling metalworking fluids (MWFs) in machining operation. The basis of this method developed in this study was based on self assessment procedure recommended by Organization Resources Counselors (ORC) of the United States (US). In addition, various MWF management elements obtained from the review on various articles, reports and author's experience regarding MWF were newly added to the evaluation guideline. A total of four areas were finally selected in order to control exposure to MWF used in machining operations. They are all related to the presence and efficiency of the control measures, exposure assessment, management on tank and sump, and safe treatment of chips and metal fines generated during machining operations. Each area is consisted of several related elements. Several evaluation areas and elements used in this study could be revised, replaced, added and deleted according to the process environment, evaluation objectives and evaluator's (manager) criteria etc. This evaluation guide manual could be used for safe management of MWF in metalworking operation. In addition, industrial hygienists can use this evaluation method for auditing and evaluating the management status on MWF.

Exposure Assessment to Suggest the Cause of Sinusitis Developed in Grinding Operations Utilizing Soluble Metalworking Fluids

  • Park, Dong-Uk;Choi, Byung-Soon;Kim, Shin-Bum;Kwag, Hyun-Seok
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.326-329
    • /
    • 2005
  • A worker who grinded the inner parts of camshafts for automobile engines using water-soluble metalworking fluid (MWF) for 14 years was diagnosed with sinusitis. We postulated that the outbreak of sinusitis could be associated with exposure to microbes contaminated in water-soluble MWF during the grinding operation. To suggest responsible agents for this outbreak, quantitative exposure assessment for chemical and biological agents and prevalence of work-related respiratory symptoms by questionnaire were studied. The exposure ranges of MWF mist (0.59 $mg/m^3$to 2.12 $mg/m^3$) measured during grinding exceeded 0.5 $mg/m^3$ of the recommended exposure limit (REL). Grinder's exposures to bacteria, fungi and endotoxins were also generally higher than not only the proposed standards, but also those reported by several studies to identify the cause of respiratory effects. Statistical test indicated that the prevalence rate of reported symptoms related to nasal cavities showed no significant differences among the operations. Evaluation on grinding operation characteristics and quantitative exposure assessment indicated that repeated exposure to MWF mist including microbes contaminated from the use of water-soluble MWF may cause respiratory diseases like sinusitis or at least increase susceptibility to the development of sinusitis

  • PDF

Integration of Current-mode VSFD with Multi-valued Weighting Function

  • Go, H.M.;Takayama, J.;Ohyama, S.;Kobayashi, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.921-926
    • /
    • 2003
  • This paper describes a new type of the spatial filter detector (SFD) with variable and multi-valued weighting function. This SFD called variable spatial filter detector with multi-valued weighting function (VSFDwMWF) uses current-mode circuits for noise resistance and high-resolution weighting values. Total weighting values consist of 7bit, 6-signal bit and 1-sign bit. We fabricate VSFDwMWF chip using Rohm 0.35${\mu}$m CMOS process. VSFDwMWF chip includes two-dimensional 10${\times}$13 photodiode array and current-mode weighting control circuit. Simulation shows the weighting values are varied and multi-valued by external switching operation. The layout of VSFDwMWF chip is shown.

  • PDF

SNR-based Weight Control for the Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filtering (공간 필터와 결합된 음성 왜곡 가중 다채널 위너 필터에서의 신호 대 잡음 비에 의한 가중치 결정 방법)

  • Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.455-462
    • /
    • 2013
  • This paper introduces the Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filter (SP-SDW-MWF) for multi-microphone noise reduction and proposes a method to determine the speech distortion weights. The SP-SDW-MWF is known as a robust noise reduction algorithm against the error caused by the mismatch in microphones. The SP-SDW-MWF adopts weights which determine the amount of noise reduction at the expense of introducing speech distortion in the noise-suppressed speech. In this paper, we use the error of power spectral density between the estimated signal and the desired signal as the evaluation measure. Thus the a priori SNR is used to control the speech distortion weights in the frequency domain. In the experimental results, the proposed method yields better result in terms of MFCC distortion compared to the conventional method.

Production of L-arginine by intergeneric fusant MWF 9031 of coryneform bacteria (Coryne형 세균의 이속간 융합주 MWF 9031에 의한 L-arginine생산)

  • Ok, Chi-Young;Park, Chung;Han, Min-Su;Choi, Hong-Kyu
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.174-179
    • /
    • 1991
  • Protoplast fusion was carried out between Brevibacterium flavum and Corynebacterium glutamicum. For the protoplast fusion, various mutants were isolated from Brevibacterium flavum ATCC 21493 and Corynebacteriurn glutamicum ATCC 21831. The optimum conditions for protoplast fusion of these mutants were examined. In the present work, the authors obtained a fusant, MWF 9031, by the intergeneric protoplast fusion between Brevibacterium flavum 108-125 and Corynebacterium glutamicum 41-214A, which was excellent in L-arginine fermentation. Fusant MWF 9031 was found to accumulate a large amount of L-arginine reached 32.5 mg/ml with a medium containing 10% glucose. The fusant possessed intermediate characteristics between the parental strains and the stability was found to retain for 60 days.

  • PDF

A Noise Robust Speech Recognition Method Using Model Compensation Based on Speech Enhancement (음성 개선 기반의 모델 보상 기법을 이용한 강인한 잡음 음성 인식)

  • Shen, Guang-Hu;Jung, Ho-Youl;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we propose a MWF-PMC noise processing method which enhances the input speech by using Mel-warped Wiener Filtering (MWF) at pre-processing stage and compensates the recognition model by using PMC (Parallel Model Combination) at post-processing stage for speech recognition in noisy environments. The PMC uses the residual noise extracted from the silence region of enhanced speech at pre-processing stage to compensate the clean speech model and thus this method is considered to improve the performance of speech recognition in noisy environments. For recognition experiments we dew.-sampled KLE PBW (Phoneme Balanced Words) 452 word speech data to 8kHz and made 5 different SNR levels of noisy speech, i.e., 0dB. 5dB, 10dB, 15dB and 20dB, by adding Subway, Car and Exhibition noise to clean speech. From the recognition results, we could confirm the effectiveness of the proposed MWF-PMC method by obtaining the improved recognition performances over all compared with the existing combined methods.

The Occupational Exposure Limit for Fluid Aerosol Generated in Metalworking Operations: Limitations and Recommendations

  • Park, Dong-Uk
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/$m^3$, short-term exposure limit ; 15 mg/$m^3$) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/$m^3$ ) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids.

Risk Assessment for Metalworking Fluids and Respiratory Outcomes

  • Park, Robert M.
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.428-436
    • /
    • 2019
  • Background: Metalworking fluids (MWFs) are mixtures with inhalation exposures as mists, dusts, and vapors, and dermal exposure in the dispersed and bulk liquid phase. A quantitative risk assessment was performed for exposure to MWF and respiratory disease. Methods: Risks associated with MWF were derived from published studies and NIOSH Health Hazard Evaluations, and lifetime risks were calculated. The outcomes analyzed included adult onset asthma, hypersensitivity pneumonitis, pulmonary function impairment, and reported symptoms. Incidence rates were compiled or estimated, and annual proportional loss of respiratory capacity was derived from cross-sectional assessments. Results: A strong healthy worker survivor effect was present. New-onset asthma and hypersensitivity pneumonitis, at 0.1 mg/㎥ MWF under continuous outbreak conditions, had a lifetime risk of 45%; if the associated microbiological conditions occur with only 5% prevalence, then the lifetime risk would be about 3%. At 0.1 mg/㎥, the estimate of excess lifetime risk of attributable pulmonary impairment was 0.25%, which may have been underestimated by a factor of 5 or more by a strong healthy worker survivor effect. The symptom prevalence associated with respiratory impairment at 0.1 mg/㎥ MWF was estimated to be 5% (published studies) and 21% (Health Hazard Evaluations). Conclusion: Significant risks of impairment and chronic disease occurred at 0.1 mg/㎥ for MWFs in use mostly before 2000. Evolving MWFs contain new ingredients with uncharacterized long-term hazards.

Microbial Assessment in Metal-Working Fluids Handling Industry (금속가공유 취급 작업장의 생물학적 인자 노출평가)

  • Park, Hyunhee;Park, Dongjin;Park, Hae Dong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.300-309
    • /
    • 2014
  • Objectives: The objective of this study is to evaluate microbial exposure hazards in the metal-working fluids(MWF) handling industry. Methods: Air quality parameters(airborne bacteria, fungi, endotoxin and oil mist) and bulk MWF in storage tanks were evaluated at 54 points at nine sites in South Korea. Results: The geometric means(GM) of culturable airborne bacteria, fungi, endotoxin and oil mist concentration were $133CFU/m^3$(n=376, range $7{\sim}6,510CFU/m^3$), $159CFU/m^3$(n=381, range $7{\sim}8,469CFU/m^3$), $8.06EU/m^3$(n=103, range $0.34{\sim}280.4EU/m^3$) and $0.20mg/m^3$(n=104, range $0.01{\sim}2.87mg/m^3$), respectively. The ratio of indoor to outdoor concentration was 2.7 for bacteria, 6.1 for endotoxin, and 4.8 for oil mist. Even though average airborne bacteria concentration did not exceed recommended exposure limits($1,000CFU/m^3$), MWF in the storage tanks was highly contaminated with bacteria(arithmetic mean $2.1{\times}10^6CFU/ml$) and exceeded recommended bacteria limits($10^5CFU/ml$). Conclusions: It is necessary for MWF handling workplaces to conduct periodical biohazard inspection of MWF storage tanks. Additionally, further research may be necessary to establish biological occupational exposure limits.