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Background: Metalworking fluids (MWFs) are mixtures with inhalation exposures as mists, dusts, and
vapors, and dermal exposure in the dispersed and bulk liquid phase. A quantitative risk assessment was
performed for exposure to MWF and respiratory disease.
Methods: Risks associated with MWF were derived from published studies and NIOSH Health Hazard
Evaluations, and lifetime risks were calculated. The outcomes analyzed included adult onset asthma,
hypersensitivity pneumonitis, pulmonary function impairment, and reported symptoms. Incidence rates
were compiled or estimated, and annual proportional loss of respiratory capacity was derived from cross-
sectional assessments.
Results: A strong healthy worker survivor effect was present. New-onset asthma and hypersensi-
tivity pneumonitis, at 0.1 mg/m3 MWF under continuous outbreak conditions, had a lifetime risk
of 45%; if the associated microbiological conditions occur with only 5% prevalence, then the life-
time risk would be about 3%. At 0.1 mg/m3, the estimate of excess lifetime risk of attributable
pulmonary impairment was 0.25%, which may have been underestimated by a factor of 5 or more
by a strong healthy worker survivor effect. The symptom prevalence associated with respiratory
impairment at 0.1 mg/m3 MWF was estimated to be 5% (published studies) and 21% (Health Hazard
Evaluations).
Conclusion: Significant risks of impairment and chronic disease occurred at 0.1 mg/m3 for MWFs in use
mostly before 2000. Evolving MWFs contain new ingredients with uncharacterized long-term hazards.
� 2019 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metalworking fluids (MWFs) aremixtures of diverse, potentially
toxic materials that vary widely across process categories (milling,
turning, grinding, stamping, etc.), within manufacturing facilities,
across enterprises and over time, with continually evolving con-
stituents. The routes of exposure are dermal, in the bulk liquid
phase from parts handling and MWF splash and mist, and by
inhalation of dusts, mists, and vapors. Over 800,000 workers in the
United States in the 1980s were estimated to be routinely exposed
to MWF in manufacturing and maintenance activities [1]. The ex-
posures typically arise because MWFs are applied as spray or liquid
stream to the surfaces where metal cutting or other process ac-
tivities occur for the purposes of lubrication, cooling, and removal
of chips or other cutting debris [2]. MWF systems exist in a range
from large central systems with sumps containing tens of
afety and Health (NIOSH).
nd Prevention, National Institute f

afety and Health Research Institute
c-nd/4.0/).
thousands of gallons (38,000s of L) of MWF, servicing dozens of
operations, to small self-contained systems dedicated to a single
machine. Operation of MWF systems includes filtration steps,
tramp oil separation, and continual monitoring and adjustment of
operating parameters such as pH, biocide levels, and lubricity [3].
There are four general classes of MWF: straight oils, soluble oils,
synthetic, and semi-synthetic [4]. In this risk assessment, all types
were treated as one generic entity because: (1) there is a wide di-
versity within those categories; (2) in many operations, environ-
mental conditions are the result of multiple contributing sources of
MWF; and (3) worker health recommendations likely would be
nonspecific to MWF type. Risk assessments specific to MWF type
would be more limited by sparse data than is the present
assessment.

MWFs in the manufacturing environment provide rich media
for microbial proliferation, sustaining a wide diversity of organisms
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in the bacterial, mold, fungal, and other orders [5]. Besides
degrading the manufacturing process through pH excursions,
corrosion facilitation, and obnoxious odors, they create a hazardous
environment for workers. Biological debris such as endotoxins from
degraded cell walls are ubiquitous inMWF systems and are a potent
lung toxin causing compromise of lung function and sensitization.
The use of biocides (themselves potentially toxic) in a variety of
forms results in inhibition of microbial growth but also the accu-
mulation of microbial remnants. In addition, some chemical in-
gredients of MWFs are themselves likely irritants or sensitizers
such as tall oil fatty acids, colophony derivatives, diethanolamine,
formaldehyde-releasing biocides, and other agents with specialized
functions.

The health effects of MWF exposures have been reviewed
extensively [6e10]. Respiratory disorders are a major category of
MWF health effects appearing as reduced pulmonary function test
(PFT) results, as well as specific and potentially life-threatening
immune-mediated disorders: occupational asthma (OA) and hy-
persensitivity pneumonitis (HP) [7,11]. These latter outbreaks,
although not common, can pose acute health emergencies and
disrupt production through workforce displacement and MWF
system rehabilitation. Because the causative agents are rarely
known ormeasured before or during specific outbreaks of OA or HP,
the exposures reported for such outbreaks are in generic terms
such as current airborne MWF concentration, assuming that higher
levels of MWF mist contribute to the dissemination of the causal
agents that were present at that time. For some outbreaks, as-
sessments with varying levels of detail on specific microbe
involvement have been made [7,11].

In large industrial populations, the standardizedmortality ratios
(SMR) for nonmalignant respiratory disease (NMRD) typically
range from 0.6 to 0.8 because of the strong healthy worker effect for
NMRD [12]. Detailed investigations of exposure response (XR) for
NMRD mortality and MWFs have not been reported; however,
summary analysesdwhen the healthy worker effect is accounted
fordreveal 15e30% excess NMRD mortality. In a survey of mor-
tality in all FordMotor Co plants 1973e1995, the SMRs for NMRD in
assembly and stamping plants (environments not entirely free of
respiratory hazards) were 0.75 (95% confidence interval [CI]: 0.69e
0.81) and 0.78 (95% CI: 0.70e0.86), respectively, whereas in
transmission and engine machining plants they were 0.88 (95% CI:
0.80e0.98) and 0.85 (95% CI: 0.74e0.97), respectively [13]. In a
large mortality study of General Motors workers from three
machining operations (transmission, gear, and axle), the overall
SMR for NMRD during 1940e1994 was 879/935 ¼ 0.94 (95% CI:
0.87e1.00) [14]. In both studies, mean employment duration was
less than 20 years, implying that excess lifetime NMRD mortality
could exceed 30e40% at MWF exposures which, in those years,
mostly ranged from 0.5 to 3.0 mg/m3 [14]. Also, contributing would
have been less common exposures from welding, heat treat, forg-
ing, painting, and other operations. This MWF-associated NMRD
mortality would have associated respiratory disease morbidity.

Dermatitis has been associated with MWF for more than two
centuries and is a common complaint in metalworking environ-
ments, but the exposure is difficult to quantify, particularly as it
involves bulk-phase contact through splash, spray, and manual
handling of MWF-coated items as well as mist deposition. Some
components of MWFs are well-known to be causative agents for
dermatitis including allergenic substances also contributing to
asthma. However, exposure attributes are usually not well-
described and incidence studies are rare (Supplemental material,
Table S8) [15e31].

The challenge for risk assessment is to generalize from findings
in the specific worker populations that have been observed over
several prior decades, as well as from animal studies usually limited
to a few priority components of MWFs. The goal in this risk
assessment was to describe respiratory impairment attributable to
generic airborne MWF exposure conditions, based on published
human studies.

2. Materials and methods

As part of a systematic review of MWF health effects for a Na-
tional Institute for Occupational Safety and Health (NIOSH) publi-
cation, a literature search through 2014 was available using
PubMed, ProQuest, Embase, CINAHL, NIOSHTIC-2, Compendex,Web
of Science, and Scopus (contributing to this literature search was
Oak Ridge Institute for Science and Education, Human Health Risk
Assessment Team, Oak Ridge Associated Universities, December
2011). Search terms pertained to all the known reported health ef-
fects and included many terms used to denote MWF exposures.
Because of the complex and changing compositions of MWF expo-
sures, only total gravimetric measures of airborne mist or dust ex-
posures to MWF are considered here for risk assessment purposes,
in some cases with restriction to the respirable or thoracic fraction.

2.1. AsthmadHP

From 13 published accounts and 4 NIOSH Health Hazard Eval-
uations (HHEs), it was possible to derive estimates of OA or HP
incidence for 28 groups of MWF exposed workers (Supplemental
material, Tables S1, S2) [11,15e17,32e44] (HHEs are investigations
in response to requests from concerned workers or employers
mandated under the Occupational Safety and Health Act, 1970). In
most studies, the period of observation could be delineated, and the
population-at-risk and concentrations of airborne MWF could be
approximately determined. For some, missing time periods (2 of 13
published studies) or exposure levels (5 of 22 groups) were stipu-
lated based on the studies with known values and on general in-
dustry experience. New cases of HP and OA were combined in
calculating incidence rates (IncRs) because they often occur
together [16,42] and share immunologic etiology. For HP, a rare
disorder, it can reasonably be assumed that all incident cases were
attributable to the MWF environment. For new-onset asthma, in
some published studies, the investigators identified the work-
related cases, based on interview and history; in others, there
was a comparison group unexposed to MWF for estimating a
background incidence. In all HHE investigations, incident asthma
cases were assessed for work-relatedness based on specific criteria.
In the few studies, where work-relatedness of OA was not deter-
mined, this analysis assumes that half the apparent background
incidence of OA was also work-related because there are other
exposures in the comparison groups that potentially cause OA (e.g.,
in welding, painting, assembly).

The observed XR was found to decline with increasing average
MWFair concentrations, implying a population-selection process as
in the healthy worker survivor effect (HWSE). To estimate XR under
minimal selection, a nonlinear regression model was fit on average
MWF air concentration using iterative weighting to account for the
uncertainty in the individual observed IncRs from the contributing
studies (SAS proc nlin [45]; see Supplemental material for model
specification). The model was: XR ¼ a � exp (b � X), where a is
estimate of XR as MWF exposure, X, approaches 0 (under minimal
HWSE) and b is estimate of how fast HWSE changes with X.

The weighting used was the inverse variance of the observed
IncR. Two very high outlying observations were excluded (XR > 0.5
per person-year per mg/m3 MWF, observed at 0.07 mg/m3 MWF).
Also, excluded was the one observation based on a national sur-
veillance cohort, which had a very high assigned weight because of
the cohort size [17]. Unlike the others, this national cohort was not
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assembled under outbreak conditions, would be expected to have a
lower XR, and the exposures at the contributing workplaces were
unknown.

The life-table approach in the BEIR VII report (“lifetime attrib-
utable risk”) [46], which accounts for competing risks with onset of
a discrete outcome, was used to calculate excess lifetime risk
(XLTR). The exposure-response for asthma/HP incidence was
applied to each year of age (more than 20 years) in a life table from
the Social Security Administration [47] until age 65 years and the
number of new cases of asthma/HP was subtracted each year from
the surviving population. Summing the excess cases over all ages is
an estimate, the excess numbers of cases that would occur as a
result of a working lifetime (45 years) exposure at various con-
centrations under outbreak conditions.

2.2. PFT changes

Pulmonary function deficits were used to calculate annual
proportional loss of respiratory capacity for use in a benchmark
dose procedure [48]. Several investigations of pulmonary function
have been carried out for populations of workers exposed to MWF
with detailed exposure assessments. Two are cross-sectional ana-
lyses of forced expiratory volume in one second (FEV1) and forced vital
capacity (FVC) with a retrospective exposure assessment permit-
ting estimation of cumulative exposure for different classes of MWF
[32,49] (Supplemental material, Table S4); others are cross-shift
studies observing acute effects of MWFs over the course of a
work shift with estimates of current exposure [32,50]
(Supplemental material, Table S5). The cross-sectional assessments
used multiple linear regression models of loss in the outcome
measure in liters (FEV1), in relation to cumulative MWF exposure
(mg/m3-year) either as a continuous [49] or categorical [32] pre-
dictors. From the estimated parameter, one can derive the XR as the
excess annual proportional loss per unit of exposure, EAPLX
(Supplemental material, Table S4). For regression analyses esti-
mating rate of loss, the baseline value of the outcome measure, if
not reported in the study, was stipulated to be 3.8 L/sec for FEV1, a
typical value for healthy adult men.

Average values of EAPLX estimates across MWF types and the
two studies were calculated as weighted means using weights as
the inverse variance of the EAPLX estimates. The cross-shift ana-
lyses typically model a discrete outcome such as a fall in FEV1 of 5%
or more, using logistic regression and can be used in a benchmark
dose procedure for discrete outcomes [48] (Supplemental material,
Table S5). The summary, mean, EAPLX was applied in two different
benchmark dose (BMD) procedures for continuous outcomes for
estimating excess risk of pulmonary impairment. A traditional
method assumes that the distribution of the outcome measure,
such as FEV1, is shifted toward smaller values with increasing
exposure, maintaining the same dispersion (SD) [51,52]. Defining
impairment as an observed FEV1 falling below 80% of predicted
(based on prediction equations [53]), one can calculate the addi-
tional proportion of impairment as a function of cumulative
exposure. This traditional BMD procedure cannot readily be applied
when impairment is defined as the Lower Limit of Normal (LLN) [53],
which is the clinically preferred definition, because a 20% deficit
represents different impairment prevalence across age groups. An
alternate method uses the NHANES III population on which the
Hankinson et al LLN prediction equations [53] were based to esti-
mate what exposure over 45 years would cause an individual to fall
below their LLN, again using the regression-derived XR estimates,
and counting how many of the population would then fall into the
impaired range as a function of MWF cumulative exposure. The
reported findings on the cross-shift fall of FEV1 were not used for
risk assessment because the clinical significance of the largely
reversible cross-shift changes for risk assessment is unclear and
long-term studies to resolve this issue do not exist. Declining pul-
monary function has also been observed to be a risk factor for
mortality independent of age, gender, race, smoking, and body
mass index. Five studies analyzed mortality and current FEV1 [54e
58], three of which provide estimates of rate ratios that can be
applied in a life-table analysis of excess lifetime mortality risk
[54,55,57] resulting from pulmonary impairment.

Respiratory and related symptoms of mucosal irritation are
common among workers exposed to MWF, but there are also
symptoms potentially related to HP (fever, chills, headache, dry
cough, flu-like symptoms, and malaise) and asthma (shortness of
breath, chest tightness, and wheeze). The natural history of MWF-
associated symptoms with sustained exposures has not been
adequately investigated; these symptoms are potentially sentinel
effects predicting long-term and possibly irreversible respiratory
and other changes. Symptom prevalence was reported in both
published studies and HHEs (Supplemental material, Tables S6, S7
[15,16,18e21,32,33,35e37,59e68]. In some cases, symptoms were
identified as “work-related,” and no comparison group reported.
When a control group was not identified, but a relative risk mea-
sure reported, the specific symptom prevalence (representing
baseline risk) in the MWF-unexposed group was stipulated based
on average prevalence for that symptom across all reporting
studies. Because there are other exposures in the local comparison
groups that potentially cause respiratory and other symptoms (e.g.,
in welding, heat treating, testing, painting, assembly), this analysis
assumes as with OA that half of the apparent background symptom
prevalence (no MWF exposure) is also work-related. Although not
an adequate basis for quantitative risk assessment, for descriptive
purposes, excess prevalence per unit of current average facility
MWF exposure was calculated across all reported symptoms. Then
a weighted nonlinear regression (using the same model as for
asthma/HP) was calculated with respect to average facility expo-
sure to estimate prevalence at low MWF exposures. The excess
prevalence at higher exposures was calculated by linear extrapo-
lation of the odds (excess prevalence ¼ excess odds/[1 þ excess
odds]).

3. Results

3.1. AsthmadHP

Episodes from published studies and HHEs were combined and
IncRs for attributable outcomes calculated (Fig. 1). The IncR
generally declined across studies with increasing average current
MWF exposure level. Assuming that the risk of onset was not cu-
mulative with respect to exposure, XRs were obtained by dividing
attributable IncRs by facility average (current) exposure concen-
trations. When plotted against average MWF exposure concentra-
tions, there was a distinct decrease in the XR with increasing
average MWF airborne concentration (Fig. 2). The decline in
exposure-response with increasing average MWF air concentration
could have several possible explanations: (1) a strong dose-rate
effect (lower exposures having a larger response than expected
based on a linear relationship); (2) a strong survival selection ef-
fect: workers with developing sensitization are less likely to remain
in employment and be identified, or susceptible individuals (such
as atopic) may be less prevalent in higher MWF exposure envi-
ronments; (3) increased underreporting of new cases with longer
periods of follow-back (suggested by inverse association of dura-
tion and IncR; Supplemental material, Table S3); and (4) over
longer periods, a lower proportion of the observation time pertains
to actual outbreak conditions causing fewer asthma or HP episodes
compared to shorter periods where an active episode was usually



Fig. 1. Annual incidence rate of occupational asthma (OA) and hypersensitivity pneumonitis (HP) (new cases per person-year) on current exposure (X, mg/m3) from published
studies and Health Hazard Evaluations (HHEs).

R.M. Park / Metalworking Fluids Respiratory Risk Assessment 431
the stimulus for the investigation. There is abundant evidence for
worker survivor bias in studies of OA as reviewed by Le Moual
et al [69].

To estimate the XR in the limit of low exposure (where dose-rate
is highest or selection least), an iteratively weighted nonlinear
regression curve was fit with a model that assumes an exponential
decline in XR with increasing MWF concentration (Fig. 2). The
intercept from this model yielded an XR of 0.136 cases per person-
year permg/m3MWF (95% CI:�0.002,0.27), conditional on being in
Fig. 2. Fitted prediction curve for XR for OA and HP on current exposure (new cases pe
regression. XR, exposure response.
an environment experiencing an HP or OA outbreak. The study
reporting the lowest incidence, which was excluded [70], was
based on national databases in which ascertainment had no direct
connection to reported episodes. The XLTR of incident OA or HP,
conditional on being in an environment experiencing an HP or OA
outbreak, was calculated by applying the estimated XR in the life-
table procedure. This assumes that the health effects are irrevers-
ible under continuing exposure and new cases are removed from
follow-up. Under continuous causative conditions over a working
r person-year per mg/m3) from published studies and HHEs by weighted nonlinear



Table 1
Excess lifetime risk (per thousand, constant MWF exposure over 45 years) for
asthma/HP onset in MWF populations under outbreak and 5% prevalence of
outbreak conditions: published studies and HHEs

MWF exposure (mg/m3) Excess lifetime risk (per 1000)

Outbreak
conditions

Assuming 5% outbreak prevalence

0.5 945 140

0.2 700 59

0.1 453 30

0.05 260 15

0.02 114 6

0.01 59 3

0.005 30 1.5

0.002 12 0.6

0.001 6 0.3

HHE, Health Hazard Evaluation; HP, hypersensitivity pneumonitis; MWF, metal-
working fluid.
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lifetime (45 years), workers exposed at 0.1mg/m3MWFwould have
a 45% risk of acquiring OA or HP (Table 1); at 0.01mg/m3MWF, they
would have a risk of 5.9%. If one were to postulate that prolonged
microbiological conditions inMWF systems giving rise to new cases
of OA or HP have only a 5% prevalence in general metalworking
environments; then at 0.1 mg/m3 MWF, the XLTR would be 3% and
the exposure for one-per-thousand risk would be about 0.003 mg/
m3 MWF (Table 1).
3.2. Pulmonary function changes

In the two published studies with sufficient summary data
[32,49], bias from an HWSE could not be assessed. Assuming no
dose-rate effect (i.e., that brief high exposures have the same effect
as longer-duration low exposures with the same cumulative
exposure), the mean annual proportional loss in pulmonary func-
tion per mg/m3 MWF was calculated to be 0.0049. Applying the
benchmark dose procedure resulted in estimated excess prevalence
of impairment (falling below 80% of predicted FEV1) at a specified
current MWF exposure for 45 years (Table 2; see Supplemental
material for benchmark dose coding). At 0.1 mg/m3 MWF, the
excess prevalence was about 2.7 per 1000. Defining impairment
using the clinically more appropriate LLN [53] produced a similar
excess prevalence, 2.4 per 1000 (Table 2; see Supplemental
material for BMD coding). The estimates from the two benchmark
dose procedures were quite close but the age distributions of excess
impairment would differ. The benchmark dose procedure was
applied only for FEV1 because FVC were FEV1 are correlated and
FEV1 is a standard evaluation tool for occupational respiratory
Table 2
Excess lifetime risk of pulmonary impairment or mortality (per thousand, over 45 years
with likely healthy worker survivor bias; by benchmark dose procedure (impairment) o

MWF exposure (mg/m3) Risk of falling below 80% of
predicted FEV1 or FVC (per 1000)

0.5 12.5

0.2 4.9

0.1 2.7

0.05 1.6

0.02 0.9

0.01 0.6

0.005 0.5

FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MWF, metalw
Insufficient resolution using NHANES data.
disease. The excess annual proportional losseswere similar for FEV1
and FVC (Supplemental material, Table S4). These BMD estimates,
based on cross-sectional regression analyses, assume that the ef-
fects are irreversible: the additional proportion of the population
that would become impaired after 45 years at a fixed exposure;
they do not account for competing risks, such as death. Based on
the previously reported relationship between declining FEV1 and
overall mortality [54,55,57], the XLTR of mortality from respiratory
impairment attributable to MWF was predicted to be 2.1 per 1000
at 0.1 mg/m3 MWF (Table 2).

As with the asthma and HP IncRs, the excess prevalence of
specific symptom complaints (such as shortness of breath, wheeze,
or cough) declined in the published studies (above 1 mg/m3 MWF)
and in the HHE reports (above 0.3 mg/m3 MWF) (Supplemental
material, Figs. S1, S3). Excess prevalence per unit of MWF expo-
sure also declined (Supplemental material, Figs. S2, S4), consistent
with the selection hypothesis suggested in the asthma/HP data, but
this would result even without an HWSE because with increasing
exposure intensity, excess prevalence cannot exceed 1.0. The
weighted regression identified the intercept representing symptom
XR for low concentrations where the HWSE would be minimal. In
the HHE investigations, which typically result from worker com-
plaints and requested investigations, the exposure range (up to 0.6
mg/m3) was lower than in the published studies (up to 3.2 mg/m3)
but the symptom XRs were higher (Supplemental material, Figs. S3,
S4). Because the predicted excess prevalence per unit MWF (at low
concentrations) was a good approximations of the predicted odds
of attributable symptoms, the excess prevalence associated with
higher exposures was obtainable by scaling the odds linearly to
higher exposures and then obtaining prevalence as odds/(1þ odds)
(Table 3). At 0.1 mg/m3, the predicted excess prevalence of a re-
ported symptom in populations without HWSE was 0.046 or 5% in
the published study populations and 21% in the HHE studies.

3.3. Dermal effects

The reported prevalence of a dermal disorder ranged from 0.10
to 0.85, but many of these studies are in response to acute out-
breaks, as with HP. For this reason and because exposure is not
generally defined, measured or reported, dermal effects are not a
sufficient basis for a risk assessment. In regulating exposures on
cancer risk or respiratory effects, however, it is likely that the
controls resulting would substantially reduce dermal exposures as
well through, e.g., enclosure and other engineering changes.

3.4. Summary risk assessment

The estimated risks for adverse respiratory effects associated
with MWF exposures are displayed in Table 4. For asthma or HP
) attributable to cumulative (constant) MWF exposure, from cross-sectional studies
r lifetable analysis (mortality)

Risk of falling below the lower
limit of normal FEV1 (per 1000)

Excess mortality risk due to
falling FEV1 (per 1000)

12.1 10.6

4.5 4.3

2.4 2.1

1.3 1.1

0.4 0.4

0.16 0.21

0.16 0.10

orking fluid.



Table 3
Predicted average prevalence of an attributable symptom (average across all
symptom categories) associated with current MWF concentration, as derived from
exposure response prediction equation

MWF exposure (mg/m3) Published papers NIOSH Health Hazard
Evaluations

0.5 0.193 0.565

0.2 0.087 0.342

0.1 0.046 0.206

0.05 0.023 0.115

0.02 0.009 0.049

0.01 0.005 0.025

0.005 0.002 0.013

Based on predicted excess prevalence per mg/m3 MWF evaluated at facility average
MWF concentration of 0.10 mg/m3 reflecting relatively low degree of workforce
selection and providing an approximation of excess odds from which excess prev-
alence at higher exposures was obtained as odds/(1 þ odds) by linear extrapolation.
MWF, metalworking fluid; NIOSH, National Institute for Occupational Safety and
Health.
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(and a 5% assumption on hazardous condition prevalence), the
XLTR at 0.1mg/m3MWFwould be about 30 per 1000 (3%). Based on
cross-sectional prevalence, attributable respiratory functional
impairment would occur in 2.4 per 1000 at 0.1 mg/m3 MWF
(0.24%), but if an HWSE comparable to that observed for asthma/HP
(Fig. 2) were present, the risk could be five-fold or higher, or >1.2%.
At 0.1 mg/m3 MWF, the estimated XLTR of mortality related to
breathing impairment was 2.1 per 1000 (also subject to underes-
timation of the PFT effect).
4. Discussion

Exposure at 0.1 mg/m3 MWF confers lifetime risks of adverse
respiratory health effects (asthma/HP, PFT losses), including
potentially fatal diseasewith sustained exposure, in the range 2e30
per thousand (Table 4) and could be considerably higher depending
on the prevalence of outbreak conditions for asthma/HP (>5%) and
the HWSE for PFTs. For comparison, in a 1998 review of MWF
hazards, NIOSH compiled preventive practices and specified a
recommended exposure limit (REL) of 0.4 mg/m3 MWF (for the
thoracic fraction), but this REL was not based on a quantitative risk
assessment [7]. The estimates of associated symptom prevalence
would encompass both acute and chronic effects. If some symp-
toms were somewhat statistically independent, then the predicted
prevalence of one or more symptoms would be higher. The higher
Table 4
Risk assessment for MWF exposure (per thousand): 45 years excess lifetime risk (mortality
excess prevalence (symptoms)

MWF (mg/m3) Exc

Published papers

PFT < LLN Mortality Associated average symptom

0.5 12.1 10.6 193

0.2 4.5 4.3 87

0.1 2.4 2.1 46

0.05 1.3 1.1 23

0.02 0.4 0.4 9

0.01 0.16 0.2 5

0.005 0.16z 0.1 2

LLN, Lower Limit of Normal; HHE, Health Hazard Evaluation; HP, hypersensitivity pneum
Conditional on the presence of episodic causative exposure conditions.

y Assuming 5% prevalence of episodic causative conditions.
z Insufficient resolution using NHANES data.
symptom prevalence in the HHE reports versus published studies
could have resulted from more acute outbreaks being the focus of
HHE investigations or possibly populations with different
employment incentives, reporting disincentives, or tolerances for
adverse effects.

This risk assessment treated all MWFs as a single generic entity.
Type-specific MWF exposure limits would be based on more
limited data, and the simultaneous presence of multiple MWF
types would present difficulties in environmental assessments for
compliance. The variability of respiratory hazard across specific
MWF systems is possibly greater within-type than between types
(at least among water-based MWFs). Microbial surveillance is
another option for addressing immunologically mediated diseases
but would be complicated and difficult to interpret with current
knowledge; it might require biofilm sampling [41,71].

In a survey of HWSE manifest across many populations with OA,
Le Moual et al recorded large effects (odds ratios 2e4) related to job
changes associated with exposures and health effects [69]. The
MWF HWSE was investigated in a re-analysis of survey findings at
three automotive manufacturing plants [72] (some of the data
pertaining to PFTs and symptoms in the present risk assessment
came from those surveys). Taking into account worker job transfers
in relation toMWF exposures, the investigators observed rate ratios
of 4.0, 0.5, and 1.8 for straight, soluble, and synthetic MWFs,
respectively, where previously estimated odds ratios ignoring
HWSE were 1.0, 0.83, and 0.80 [72]. Those previous estimates were
in conflict with the statistically significant increase in cross-shift
FEV1 decrements exceeding 5% [32,50], with relative risks ranging
from1.8 to 6.9 acrossMWF types (Supplemental material, Table S5).
Furthermore, the symptom prevalence attributable to MWF (dys-
pnea, wheeze, chest tightness, and chronic bronchitis) across many
studies is inconsistent with minimal or even protective effects on
pulmonary function. Finally, there is the overall increase in NMRD
mortality in MWF populations (Introduction) [13,14], which would
not be accompanied byminimal or negative PFT impairment. In the
larger PFT study [49] for this risk assessment, the mean exposure
levels were in the range of 0.4e0.5 mg/m3 where, in the asthma/HP
incidence studies analyzed here, substantial HWSE was observed.
The XR estimated here for asthma/HP with facility-average expo-
sures of 0.5 mg/m3 was a factor of 7 smaller than that estimated to
occur without survivor bias (Supplemental material, asthma/HP:
XR (0) vs. XR (0.5)). Therefore, the exposures corresponding to
excess PFT lifetime impairment estimated here would likely be
overestimated by a factor of at least 5 if the HWSE for PFT XR is
comparable to that of asthma/HP incidence. These PFT findings are
an indication of the daunting problems of cross-sectional
, asthma/hypersensitivity), 45 years excess prevalence by benchmark dose (PFT), and

ess risk (per 1000)

Published papers & HHE HHE
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onitis; MWF, metalworking fluid; PFT, pulmonary function test.
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assessments in the presence of HWSE: large costly and well-
conducted studies are threatened.

4.1. Limitations

The analysis of OA and HP incidence is limited by the unknown
identity of causative agents and their occurrence. The prevalence of
sustained MWF conditions causing OA or HP in metalworking en-
vironments plausibly lies in the range 0.1e5% of metalworking
environments, considering that less serious episodes may go un-
reported or even unrecognized. In this analysis, when work-
relatedness of asthma was inferred from comparisons with
workers unexposed to MWF, it was assumed that half of the inci-
dence there was work-related. This assumption affected 6 of the 22
estimates of XR where exposures were <1 mg/m3, the more
important data points in estimating the intercept representing
minimal HWSE (Fig. 2). A sensitivity analysis in which none of the
asthma/HP cases in the MWF-unexposed group were assumed
work-related, produced a slightly smaller intercept for the XR with
minimal HWSE (0.121 vs. 0.136), but the model fit was inferior (F
value: 6.74 vs. 12.75).

The BMD analysis for PFT does not account for competing risks,
such as death, and may have slightly overestimated excess risk of
impairment along with the underestimation due to HWSE. For
MWF-associated pulmonary impairment to be an independent
causal risk factor for mortality, requires the assumption that there
are no other common medical conditions that independently in-
crease mortality risk and diminish pulmonary function. Thus, the
estimate of 0.2% excess mortality at 0.1 mg/m3 MWF attributable to
pulmonary function losses may be an overestimate (but also
possibly underestimated due to HWSE).

4.2. Other MWF risk assessments

ICF Kaiser [73] examined pulmonary function data from several
published studies [32,37,50,62] and an unpublished study (Greaves
et al, 1996: Respiratory health of automobile workers exposed to
MWF aerosols. III. Lung spirometry). Using data from Kennedy et al
[50], they estimated that anMWF level of 0.39mg/m3 (Mondays) or
0.26 mg/m3 (Fridays) would cause a cross-shift decrease in FEV1
exceeding 5% in 10% of the population. The present work, based on
two of the studies [32,49], estimated the 10% excess prevalence
occurring at a higher MWF concentration: about 1.0 mg/m3 (data
not shown). Ten percent excess impairment (loss�5%) over a single
workday [73], even if reversible, is of concern and occurred at MWF
levels (about 0.5 mg/m3) conferring 1.2% XLTR of pulmonary
impairment (as analyzed here and underestimated). However, the
cross-shift outcome was not used in the present risk assessment
because of uncertain interpretation.

In an analysis of respiratory symptoms from Greaves et al [37],
ICF Kaiser observed a decline in chronic bronchitis symptoms with
increasing current exposure concentrations for the three major
classes of MWF [73]. This observation is consistent with the
diminishing XR identified in this risk assessment for multiple
MWF-associated symptoms taken together. The ICF estimates of
excess prevalence (at 0.2 mg/m3) for the relatively serious symp-
toms of chronic bronchitis were 9e13% for various MWF types,
slightly less than the 9% (published) and 34% (HHE) estimated here
(Table 4).

4.3. OSHA guidance

US OSHA commissioned the earlier risk assessment by ICF Kaiser
[73] and convened a working committee from industry, academia,
labor, and governmentdthe OSHA Metalworking Fluids Standards
Advisory Committeedwhich performed an extensive review of the
known health effects, current exposures, and industrial practices in
controlling MWF exposures [74]. Most of the 15 committee mem-
bers concluded that a permissible exposure limit (PEL) would be an
appropriate component of MWF regulation (“The committee rec-
ommends a new 8-hour time weighted average PEL of 0.4 mg/m3

thoracic particulate and 0.5 mg/m3 ‘total’ particulate. The scientific
rationale for the recommended PEL is based on studies of asthma
and diminished lung function”; https://www.osha.gov/dhs/
reports/metalworking/MWFSAC-FinalReportSummary.
html#START). The present risk assessment reflecting the experi-
ence of MWF-exposed workers before 2000, finds that generic
MWF exposures at 0.1 mg/m3 MWF (one-fourth of the current
NIOSH REL) have associated attributable risks of 2e30 per thou-
sand, which are higher than generally considered acceptable. In
addition, changing MWF composition with evolving technology
pose new, unknown risks [75].
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