• 제목/요약/키워드: MWCNTs' bundles

검색결과 2건 처리시간 0.055초

Improved High Rate Capabilities of Composite Cathodes for Lithium Ion Batteries

  • Lee, Sang-Young;Jeong, Yeon-Uk
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.309-312
    • /
    • 2008
  • In an attempt to achieve high rate capability of cell, a new composite cathode was prepared by mixing host compounds with MWCNTs and Super P carbon. Because MWCNTs generally have bundle-type morphologies, it is not easy to get completely separated form. Successful dispersion of divided small bundles between the host particles keeps electrochemical contacts among the particles and plays a significant role in the buffer action as a volume-change absorber. Relative amounts and distributions of the additives are important for design of the electrode for high power application of lithium ion batteries.

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity

  • Krishnamurthy, G.;Agarwal, Sarika
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3046-3054
    • /
    • 2013
  • Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.