• Title/Summary/Keyword: MW Wind Turbine

Search Result 377, Processing Time 0.023 seconds

A Study on Components Load of 5MW Wind Turbine Pitch Drive (5MW 풍력용 Pitch Drive 구성품의 부하에 관한 연구)

  • Kim, Dong-Young;Lee, In-Bum;Liang, Long-Jun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 2014
  • Wind power is a type of clean energy source which does not produce carbon dioxide. The wind turbine industry is considered as a major growth industry in many countries. The main cause of wind turbine failure arises in the wind turbine gearbox, and the main type of damage occurs in the bearings and gears. Therefore, predictions of gear and bearing damage are very important to ensure the reliability of the wind turbine reducers used in these systems. In this research, in order to optimize the wind turbine reducer, a series of simulations and redesigns was done using the tool RomaxDesigner. The RomaxDesigner model was used to analyze the bearing life of the duty cycle for a 5 MW wind-turbine pitch drive and to calculate the load in operating states. The reducer was designed to satisfy the life requirement by analyzing bearing damage and calculating the stress values of the main parts of the reducer.

A Sensitivity and Performance Analysis for Torque Mode Switching on 2MW Direct Drive Wind Turbine Generator (2MW급 직접구동형 풍력발전기의 풍황 민감도 및 토크모드 스위칭 성능 해석)

  • Rho, Joo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1455-1460
    • /
    • 2014
  • Wind turbine generators were designed on general regulations of wind condition. At real situations, it could be different from the design conditions. There are many control methods and definitions of transient region, because an efficient wind turbine generator control logic is the important matter in generator performance and annual energy production at real conditions. In this document, the power generation sensitivity for wind speed and turbulence intensities was defined to know the sensitive transient region. Wind conditions are applied for the ranges of 7~10m/s mean wind speed and 14~20% turbulence intensity. The sensibility of HR-D86 wind generator was increased in transient region(8~10m/s) on power curve diagram through a torque control to a pitch control. And then GH-bladed simulations was performed for performance analysis of the torque mode switching in transient region on 2MW direct drive wind generator(HR-D86) which is designed IEC class II for onshore. Through the sensitivity and performance analysis, the sensitivity for real wind condition could be the performance index for an wind generator. And the torque mode switching in transient region can increase the mean power generation on HR-D86 wind turbine generator.

Assessment of Offshore Wind Power Potential for Turbine Installation in Coastal Areas of Korea (터빈설치를 위한 한국 연안 해상풍력발전 부존량 평가)

  • Kang, Keum Seok;Oh, Nam Sun;Ko, Dong Hui;Jeong, Shin Taek;Hwang, Jae Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.191-199
    • /
    • 2018
  • In this paper, wind data at 20 locations are collected and analyzed in order to review optimal candidate site for offshore wind farm around Korean marginal seas. Observed wind data is fitted to Rayleigh and Weibull distribution and annual energy production is estimated according to wind frequency. As the model of wind turbine generator, seven kinds of output of 1.5~5 MW were selected and their performance curves were used. As a result, Repower-5 MW turbines showed high energy production at wind speeds of 7.15 m/s or higher, but G128-4.5 MW turbines were found to be favorable at lower wind speeds. In the case of Marado, Geojedo and Pohang, where the rate of occurrence of wind speeds over 10 m/s was high, the capacity factor of REpower's 5 MW offshore wind turbine was 56.49%, 50.92% and 50.08%, respectively.

The Study about Performance Test of Wind turbine (풍력발전기 출력성능 평가에 대한 연구)

  • Ko, Suk-Whan;Jang, Moon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1348-1349
    • /
    • 2011
  • In this paper, The case of power performance test for 3MW wind-turbine system is introduced. For the verification of power curve and the certification of wind-turbine, power performance test is very important. This paper described the power testing results of a 3MW wind turbine and analysed an uncertainty about the testing. The measured power curves are very closely coincide with the calculated. Total uncertainty of measured data for Power Curve is 120~200kW in the rated power.

  • PDF

Electromagnetic design of 10 MW class superconducting wind turbine using 2G HTS wire

  • Kim, J.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • This paper introduces design processes of 10 MW class superconducting generator for wind Turbine. Superconducting generator can produce 5 times stronger magnetic field than permanent magnet at least, which enables large scale wind turbine to function as a lighter, smaller and more highly efficient system. These processes are targeted for higher efficiency and shorter high temperature superconductor (HTS) wires to fabricate 10 MW class superconducting generator. Three different approaches will be described in these design processes. First design process focuses on the number of rotor poles. Secondly, 270 and 360 A operating current of superconducting field coil can be adapted as a design parameter in this process. Lastly, 3 and 6 kV line to line voltage of stator coil will be used to design 10 MW class superconducting generator.

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

The Power Performance Testing for 3MW Wind turbine System (3MW 풍력발전시스템 출력성능평가에 관한 연구)

  • Ko, Suk-Whan;Jang, Moon-Seok;Park, Jong-Po;Lee, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • We are carried out power performance testing for 3MW wind turbine system at Je-ju wind turbine testing Site and analyzed measured data which was stored through monitoring system. In this paper, we described the power performance testing results and analyzed an uncertainty of measured data sets. The power curve with measured power data is closely coincide with designed power curve except for the low wind speed sections(4m/s~7m/s) and the annual energy production which is given Ray leigh distribution was included with 1.5~5.9% of uncertainty in the wind speed region as 4~11m/s. Although the deviation of curve between measured power and designed power is high, the difference of annual energy production is low in the low wind speed region.

An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine (윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm

  • Ahn, Dang;Shin, Sung-chul;Kim, Soo-young;Kharoufi, Hicham;Kim, Hyun-cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • The purpose of this study is to evaluate various means of wind power turbines installation in the Korean west-south wind farm (Test bed 100 MW, Demonstrate site 400 MW). We presented the marine environment of the southwest offshore wind farm in order to decide the appropriate installation vessel to be used in this site. The various vessels would be WTIV (Wind turbine installation vessel), jack-up barge, or floating crane ${\cdots}$ etc. We analyzed the installation cost of offshore wind turbine and the transportation duration for each vessel. The analysis results showed the most suitable installation means for offshore wind turbine in the Korean west-south wind farm.

Design of a Small-Scale Motor-Generator System for a Large Wind Turbine (대형 풍력발전기용 소형 모터-발전기 시스템 설계)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.