• Title/Summary/Keyword: MW급 풍력발전기

Search Result 73, Processing Time 0.016 seconds

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging (자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 2016
  • The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

Structure Analysis and Scale Model Test for Strength Performance Evaluation of Submersible Mooring Pulley Installed on Floating Offshore Wind Turbine (부유식 해상풍력발전기용 반잠수식 계류 풀리의 강도 성능평가를 위한 구조해석과 축소 모형시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing owing to global warming. In a situation where the installation of floating wind turbines is increasing worldwide, concerns about the huge loss and collapse of floating offshore wind turbines owing to strong typhoons are deepening. A new type of disconnectable mooring system must be developed for the safe operation of floating offshore wind turbines. A new submersible mooring pulley considered in this study is devised to more easily attach or detach the floating of shore wind turbine with mooring lines compared with other disconnectable mooring apparatuses. To investigate the structural safety of the initial design of submersible mooring pulley that can be applied to an 8MW-class floating type offshore wind turbine, scale-down structural models were developed using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by conducting the tensile tests. The finite element analysis (FEA) of submersible mooring pulley was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the FEA, the structural weak parts on the submersible mooring pulley were reviewed. The structural model tests were conducted considering the main load conditions of submersible mooring pulley, and the FEA and test results were compared for the locations that exceeded the maximum tensile stress of the material. The results of the FEA and structural model tests indicated that the connection structure of the body and the wheel was weak in operating conditions and that of the body and the chain stopper was weak in mooring conditions. The results of this study enabled to experimentally verify the structural safety of the initial design of submersible mooring pulley. The study results can be usefully used to improve the structural strength of submersible mooring pulley in a detailed design stage.

Analysis of Dynamic Response of 1.5MW DFIG Wind Power Simulator with Real-grid Connection (실 계통 연계 1.5MW급 DFIG 풍력발전 시뮬레이터의 응동특성 분석)

  • Choy, Young-Do;Jeon, Young-Soo;Jeon, Dong-Hoon;Shin, Jeong-Hoon;Kim, Tae-Kyun;Jeong, Byung-Chang
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.4-12
    • /
    • 2009
  • The effect of change in DFIG (doubly-fed wind power generator) rotating speed and active power on the grid was analyzed to understand the characteristics of wind power using the wind power simulator connected to the grid at Gochang Power Quality Test Center. Electric power quality improvement devices (DVR, STATCOM, SSTS) and electric power quality disturbance application devices for 22.9 kV grid are equipped at Gochang Power Quality Test Center. Induction motor and VVVF inverter were used to emulate the blade of a wind power generator, and a simulator for Cage wound induction generator and DFIG was developed. The trial line were assumed to be 20 km and 40 km in length, and variable wind speed pattern was set using wind speed data from Ducjeokdo to verify the power characteristics of the wind power generator according to rotating speed.

  • PDF