• Title/Summary/Keyword: MUSIC Algorithm

Search Result 351, Processing Time 0.031 seconds

Fine-tuning SVM for Enhancing Speech/Music Classification (SVM의 미세조정을 통한 음성/음악 분류 성능향상)

  • Lim, Chung-Soo;Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machines have been extensively studied and utilized in pattern recognition area for years. One of interesting applications of this technique is music/speech classification for a standardized codec such as 3GPP2 selectable mode vocoder. In this paper, we propose a novel approach that improves the speech/music classification of support vector machines. While conventional support vector machine optimization techniques apply during training phase, the proposed technique can be adopted in classification phase. In this regard, the proposed approach can be developed and employed in parallel with conventional optimizations, resulting in synergistic boost in classification performance. We first analyze the impact of kernel width parameter on the classifications made by support vector machines. From this analysis, we observe that we can fine-tune outputs of support vector machines with the kernel width parameter. To make the most of this capability, we identify strong correlation among neighboring input frames, and use this correlation information as a guide to adjusting kernel width parameter. According to the experimental results, the proposed algorithm is found to have potential for improving the performance of support vector machines.

Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Based on Support Vector Machine (SMV코덱의 음성/음악 분류 성능 향상을 위한 Support Vector Machine의 적용)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.142-147
    • /
    • 2008
  • In this paper, we propose a novel a roach to improve the performance of speech/music classification for the selectable mode vocoder (SMV) of 3GPP2 using the support vector machine (SVM). The SVM makes it possible to build on an optimal hyperplane that is separated without the error where the distance between the closest vectors and the hyperplane is maximal. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then feature vectors which are a lied to the SVM are selected from relevant parameters of the SMV for the efficient speech/music classification. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Quality Improvement of Karaoke Mode in SAOC using Cross Prediction based Vocal Estimation Method (교차 예측 기반의 보컬 추정 방법을 이용한 SAOC Karaoke 모드에서의 음질 향상 기법에 대한 연구)

  • Lee, Tung Chin;Park, Young-Cheol;Youn, Dae Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.227-236
    • /
    • 2013
  • In this paper, we present a vocal suppression algorithm that can enhance the quality of music signal coded using Spatial Audio Object Coding (SAOC) in Karaoke mode. The residual vocal component in the coded music signal is estimated by using a cross prediction method in which the music signal coded in Karaoke mode is used as the primary input and the vocal signal coded in Solo mode is used as a reference. However, the signals are extracted from the same downmix signal and highly correlated, so that the music signal can be severely damaged by the cross prediction. To prevent this, a psycho-acoustic disturbance rule is proposed, in which the level of disturbance to the reference input of the cross prediction filter is adapted according to the auditory masking property. Objective and subjective test were performed and the results confirm that the proposed algorithm offers improved quality.

Cascade AOA Estimation Using Uniform Rectangular Array Antenna (등간격 사각 배열 안테나를 적용한 캐스케이드 도래각 추정)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.923-930
    • /
    • 2018
  • In the wireless communication system based on an array antenna, the angle of arrival (AOA) information of signal is very important element and various AOA estimation algorithms have been studied. Although most AOA estimation algorithms employ the uniform linear array (ULA), some algorithms apply the planar array (PA) antenna. In this paper, we present an algorithm for efficiently estimating AOAs of adjacent multiple signals, based on the uniform rectangular array antenna. This approach has two steps; after approximately estimating AOA groups consisting of the closely located signal sources using CAPON, accurately estimating the individual AOA of each signal in the estimated AOA group using Beamsapce MUSIC. The estimation performance of the presented cascade AOA algorithm is illustrated through the computer simulation example.

Real Time AOA Estimation Using Neural Network combined with Array Antennas (어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.87-91
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

  • PDF

Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation (부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법)

  • Byeon, BuKeun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

Enhancement of Speech/Music Classification for 3GPP2 SMV Codec Employing Discriminative Weight Training (변별적 가중치 학습을 이용한 3GPP2 SVM의 실시간 음성/음악 분류 성능 향상)

  • Kang, Sang-Ick;Chang, Joon-Hyuk;Lee, Seong-Ro
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.319-324
    • /
    • 2008
  • In this paper, we propose a novel approach to improve the performance of speech/music classification for the selectable mode vocoder (SMV) of 3GPP2 using the discriminative weight training which is based on the minimum classification error (MCE) algorithm. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then proposed the speech/music decision rule is expressed as the geometric mean of optimally weighted features which are selected from the SMV. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Design and Implementation of a Walking Beat Game Machine Using Frequency Analysis (주파수 분석을 이용한 워킹 비트 게임기 설계 및 구현)

  • 이건학;김도현;안현식
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.123-126
    • /
    • 2000
  • In this paper, the portable game machine called W"alking Beat" is designed and implemented not only to propose the new possibilities for the peripheral equipment market of portable acoustic machine but also to overcome the limitation of the acoustic simulation game machine such as the existing Beat Mania. The old game machine can be used only in a particular place, where it is installed. However, in order to get over the constraint on this space problem "Walking Beat Game Machine" is designed to facilitate the portability. In addition, the frequency analysis method using FFT algorithm is employed by regarding the music data for the portable digital acoustic machine as source so that the limitation that the existing game machine depends heavily on the previously registered game contents can be overcome. By making it possible to play games for all the music and putting an emphasis on multimedia trend only to listen to the music, it is speculated that it can contribute to the development of the new culture in the near future.

  • PDF

Real-Time Implementation of Acoustic Echo Canceller Using TMS320C6711 DSK

  • Heo, Won-Chul;Bae, Keun-Sung
    • Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • The interior of an automobile is a very noisy environment with both stationary cruising noise and the reverberated music or speech coming out from the audio system. For robust speech recognition in a car environment, it is necessary to extract a driver's voice command well by removing those background noises. Since we can handle the music and speech signals from an audio system in a car, the reverberated music and speech sounds can be removed using an acoustic echo canceller. In this paper, we implement an acoustic echo canceller with robust double-talk detection algorithm using TMS-320C6711 DSK. First we developed the echo canceller on the PC for verifying the performance of echo cancellation, then implemented it on the TMS320C6711 DSK. For processing of one speech sample with 8kHz sampling rate and 256 filter taps of the echo canceller, the implemented system used only 0.035ms and achieved the ERLE of 20.73dB.

  • PDF

A Study on the Printed Music Note Recognition (인쇄된 악보의 음표인식에 관한 연구)

  • Lee, C.H.;Kwon, H.Y.;Lee, S.H.;Kim, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.427-430
    • /
    • 1992
  • In this paper, we proposed an algorithm for the musical note recognition. Firstly, a given bit-mapped music score image is converted to a set of individual note pattern images via vertical projection. Then, the pitch of a note is determinal by comparison in the note-head position with the reference five-lines. Also, the length of a note is found via leader clustering with a set of normalized note patterns. Finally, a datafile to play the music is obtained using the pitch and length of musical notes. Experimental results with a simple musical score image show that the proposed scheme is performed well.

  • PDF