• Title/Summary/Keyword: MULTI-RADIUS

Search Result 216, Processing Time 0.03 seconds

Strength Evaluation of Sin91e-Radius Total Knee Replacement (TKR) (인공무릎관절의 단축법위 회전시 근력정가)

  • Wan, Jin-Young;Sub, Kwak-Yi
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.484-489
    • /
    • 2004
  • Artificial joint replacement is one of the major surgical advances of the 21th century. The primary purpose of a TKA (Total Knee Arthroplasty) is to restore normal knee Auction. Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from a chair or climbing stairs;(b) allow the same range of motion as an complete knee; and (c) provide adequate knee joint stability. Four individuals (2 peoples after surgery one year and 2 peoples after surgery three years) participated in this study. All they were prescreened for health and functional status by the same surgeon who performed the operations. Two days of accommodation practice occurred prior to the actual strength testing. The isometric strength (KIN-COM III) of the quadriceps and hamstring were measured at 60$^\circ$ and 30$^\circ$ of knee flexion, respectively. During isokinetic concentric testing, the range of motion was between 10$^\circ$ to 80$^\circ$ of knee flexion (stand-to-sit) and extension (sit-to-stand). for a given test, the trial exhibiting maximum torque was analyzed. A 16-channel MYOPACTM EMG system (Run Technologies, Inc.) was used to collect the differential input surface electromyographic (EMG) signals of the vastus medialis (VM), vastus lateralis(VL), rectus femoris (RF) during sit-to-stand and stand-to-sit tests. Disposable electrodes (Blue SensorTM, Medicotest, Inc.) were used to collect the EMG signals. The results were as follows; 1. Less maximum concentric (16% and 21% less for 1 yew man and 3 years mm, respectively) and isometric (12% and 29%, respectively) quadriceps torque for both participants. 2.14% less maximum hamstrings concentric torque for 1 year man but 16% greater torque for 3 years mm. However, 1 year man had similar hamstring isometric peak torque for both knees. 3. Less quadriceps co-contraction by 1 year man except for the VM at 10$^\circ$-20$^\circ$ and 30$^\circ$-50$^\circ$ range of knee flexion.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Underwater Telemetering by Ultrasonic Multi-Beam Transducer (Multi-Beam 초음파진동자의 수중원격제어에 관한 연구)

  • Choe, Han-Gyu;Sin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This paper described on the availability fo the underwater telemetering by the ulterasonic multi-beam system made as a trial to expand detectable range of the fish school. The ultrasonic multi-beam system consisted of four transducers which reconstructed with the existing net recorder. The experiment for the telemetering carried out in the set net fishing ground. The results obtained are summerized as follows: 1. The detectable distance of a target by the linear arrangement of four transducers increased according to the sea depth and the interval between transducers. 2. When the fish school in the entrance of set net was measured by linear arrangement of transducers it was entered in depth of 2.5~3.5m at near position of leader, and in depth of 3.5~4.5m at near position of door net. 3. The deviations of error between the actual position and the position by transducer in case of the target depth 1m, 1.5m, 2m were 5.9~27.1cm, 3.2~28.9cm, 3.5~25.8cm respectively, and 68.3% probability radius of them were 14.6cm, 17.7cm, 17.0cm respectively. 4. When the fish school in the fish court of set net was measured by plane arrangement of transducer it was entered toward the opposite direction of tide current. 5. The available distance of telemetering by the multi-beam transducer was 1.8km and the telemetering was possible to control everywhere in case of sea depth more than three meters.

  • PDF

System Throughput of Cognitive Radio Multi-hop Relay Networks (무선인지 멀티홉 릴레이 네트워크의 시스템 스루풋)

  • Hassan, I.;Rho, Chang-Bae;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.29-39
    • /
    • 2009
  • The need for radio spectrum is recently considered as a huge hurdle towards the rapid development of wireless networks. Large parts of the spectrum are allocated to licensed radio services in proprietary way. However, enormous success of the wireless services and technologies in the unlicensed bands has brought new ideas and innovations. In recent years cognitive radio has gained much attention for solving the spectrum scarcity problem. It changes the way spectrum is regulated so that more efficient spectrum utilization is possible. Multi-hop relay technology on the other hand has intensively been studied in the area of ad hoc and peer-to-peer networks. But in cellular network, only recently the integration of multi-hop capability is considered to enhance the performance significantly. Multi-hop relaying can extend the coverage of the cell to provide high data rate service to a greater distance and in the shadowed regions. Very few papers still exist that combine these methods to maximize the spectrum utilization. Thus we propose a network architecture combining these two technologies in a way to maximize the system throughput. We present the throughput capacity equations for the proposed system model considering various system parameters like utilization factor by the primary users and primary users' transmission radius and through extensive numerical simulations we analyze the significance of work.

Correlation Analysis between Injury Index of Multi-cell Headrest through k-means Clustering DB (k-means clustering DB를 통한 Multi-cell headrest의 상해지수 간 상관관계 분석)

  • Sungwook Cho;Seong S. Cheon
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The development of transportation methods has improved human transportation convenience and made it possible to expand the travel radius of people with disabilities who have difficulty moving. However, in the case of WAV (wheelchair Accessible Vehicle), the safety that may occur in a vehicle accident is still lower than that of regular passenger seats. In particular, in the case of a rear-end collision that may occur in a defenseless situation, it can cause fatal neck injuries to disabled passengers. Therefore, a more detailed design plan must be reflected in the headrest to be applied to WAV. In this study, a multi-cell headrest was proposed to implement local compression characteristic distribution of the headrest during rear-end collision of WAV. Afterwards, a correlation analysis was performed between the passenger's NIC (Neck Injury Criterion) and impact energy absorption using the data set construction through analysis and the clustering results using k-means clustering. As a result of clustering, it was confirmed that data clusters with similar characteristics were formed, and a correlation analysis between NIC and impact energy absorption through the characteristics of each cluster was performed. As a result of the analysis, it was confirmed that the softer the cell compression characteristics in Mid3 and Mid6, the more impact energy absorption increases, and the harder the cell compression characteristics in Front2, Mid3, and Mid6, the more effective it is in reducing NIC.

Investigation of Source Dependent Optical and Microphysical Characteristics of Aerosol Using Multi-wavelength Raman Lidar in Anmyun, Korea (다파장 라만 라이다를 이용한 발생지에 따른 안면도 지역 에어러솔의 광학적 및 미세물리적 특성)

  • Noh, Young-Min;Lee, Han-Lim;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.554-566
    • /
    • 2010
  • We present optical and microphysical particle properties of aerosol retrieved by multi-wavelength Raman lidar at Anmyun island ($36.32^{\circ}N$, $126.19^{\circ}E$), Korea. The results present aerosol properties in various height layers of the atmospheric pollution layers observed over the Korean peninsula on eight consecutive days (27, 28, 29, 30 and 31 May, 4, 5 and 7 June) in 2005 at Anmyun island. We found anthropogenic pollution on 27, 28, and 29 May and local haze on other measurement days. The origin of the particle plumes was determined by simulations of FLEXPART. The source regions of the particles resulted in rather clear differences between the optical and microphysical properties of the pollution layers. The single-scattering albedo of anthropogenic aerosols from China ($0.91{\pm}0.01$ at 532 nm) were lower than the single-scattering albedo of local haze aerosols ($0.95{\pm}0.01$ at 532 nm). Local haze aerosols show larger effective radii of $0.24{\pm}0.02\;{\mu}m$ at relative humidity of 55~75%. The effective radii of anthropogenic aerosols are $0.20{\pm}0.2\;{\mu}m$ and $0.27\;{\mu}m$ at relative humidity of 25~50%.

Retrieval of Aerosol Microphysical Parameter by Inversion Algorithm using Multi-wavelength Raman Lidar Data (역행렬 알고리즘을 이용한 다파장 라만 라이다 데이터의 고도별 에어로졸 Microphysical Parameter 도출)

  • Noh, Young-Min;Kim, Young-Joon;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.97-109
    • /
    • 2007
  • Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N,\;126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N,\;126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around $0.31{\sim}0.33{\mu}m$, single scattering albedo between $0.964{\sim}0.977$ at 532 nm in PBL and effective radii of $0.27{\mu}m$ and single scattering albedo between $0.923{\sim}0.924$ above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between $0.23{\sim}0.24{\mu}m$, single scattering albedo around $0.924{\sim}0.929$ at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

Design and Application of LoRa-based Network Protocol in IoT Networks (사물 네트워크에서 LoRa 기반 네트워크 프로토콜 설계 및 적용)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1089-1096
    • /
    • 2019
  • Recently, small-scale IoT services using a small amount of information through low-performance computing have been spread. It requires low cost, low-power, and long-distance communication technologies with wide communication radius, relatively low power consumption. This paper proposes a MAC layer and routing protocol that supports multi-hop transmission in small-scale IoT environment distributed over a large area based on LoRa communication and delivering a small amount of sensing data. The terminal node is mobile and the communication type provides bidirectional transmission between the terminal node and the network application server. By applying the proposed protocol, a production line monitoring system for smart factory was implemented. It was confirmed that the basic monitoring functions are normally performed.

The effects of Breif, Intense Transecutaneous Electrical Nerve Stimulation on Nerve conduction, Pain Threshold in Healthy subjects (Brief, Intense TENS 자극이 신경전도, 통증역치의 변화에 미치는 효과)

  • Kim Tae-Youl;Hwang Tae-Yeun;Huh Choon-Bok
    • The Journal of Korean Physical Therapy
    • /
    • v.6 no.1
    • /
    • pp.171-183
    • /
    • 1994
  • Purphose. This present study examines the effect of brief, intense transcutaneous electrical nerve stimulation(BTENS) on sensory nerve conduction, electrical pain threshold, and two-point discrimination measured at the superficial radial nevre distribution in 20 healthy subjects. Subjects. Twenty volunteercs, (10 females and 10 males(age range : 20-38 years : $mean{\pm}SD\;:\;27.00{\pm}5.12$), only subjects without prior traumatological and pathological were eligible to participated in this study. Methods. Nerve conduction were determined for the right superficial radial nerve. Electrical pain threshold were determined for the right wrist ipsilateral to the site of BTENS. Small disc electrodes were attached to the surface of the skin stradding the end of the radius. Square wave electrical pulses were delivered from an isolated stimulator through a constant current device at a frequency of 2 Hz(5 ms pulse width). Two-point discrimination, measured on the sensory distribution of superficial radial nerve. BTENS was delivered using a Max-SD( Medical design co.) portable battery powered stimulator. A cicular Ag/AgCl electrode in contact with hypertonic saline gel was attached to the lateral(radial side) surface of the forearm. Results. No significant effects were observed between stimulation methods in the prestimulation cycle(multi-way ANOVA repeated measures : distal latency ; F1.14=0.332. amplitude ; F 0.80=0.445, pain threshold ; F0.06=0.940.2 point discrimination ; F1.50=0.236). Highly significant effects were observed time with the pretreatment and 6 posttreatment cycles(p<0.01). Mighty significants differences in nerve conduction and pain threshold were found using un multi-way ANOVA repeated measures among stimulation methods for each cycles(p<0.01). Conclusion and Discussion The authors concludes that both nerve conduction and pain threshold changes are associated with therapy (stimulation) level of BTENS.

  • PDF

DESIGN OF A CENTRIFUGAL BLOOD PUMP FOR ECMO DEVICE THROUGH NUMERICAL ANALYSES (수치해석을 통한 ECMO용 원심형 혈액 펌프 설계)

  • Choi, S.;Hur, N.;Moshfeghi, M.;Kang, S.;Kim, W.;Kang, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2016
  • With the rapid increase in the number of patients with cardiopulmonary diseases, more cardiopulmonary circulatory assist devices are also needed. These devices can be employed when heart and/or lung function poorly. Due to the critical role they take, these devices have to be designed optimally from both mechanical and biomechanical aspects. This paper presents the CFD results of a baseline model of a centrifugal blood pump for the ECMO condition. The details of flow characteristics of the baseline model together with the performance curves and the modified index of hemolysis(MIH) are investigated. Then, the geometry of baseline impeller and the volute are modified in order to improve the biomechanical performance and reduce the MIH value. The numerical simulations of two cases represent that when impeller radius and prime volume decrease the MIH value also decreases. In addition, the modified geometry shows more uniform pressure distribution inside the volute. The findings provide valuable information for further modification and improvement of centrifugal blood pumps from both mechanical and biomechanical aspects.