• Title/Summary/Keyword: MUC gene

Search Result 88, Processing Time 0.02 seconds

Effects of Bojung-ikgitang-gamibang and Seonbang-paedoktang on Secretion of Airway Mucus and Expression of Mucin Gene (보중익기탕 가미방(補中益氣湯 加味方)과 선방패독탕(仙方敗毒湯)이 기도 점액의 분비와 뮤신 유전자발현에 미치는 영향)

  • Jung, Chang-Ho;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.33-55
    • /
    • 2007
  • Objectives In the present study, the author intended to investigate whether bojung-ikgitang-gamibang(BJGB) and seonbang-paedoktang(SBPT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods In vivo experiment, mice's mucin which is on a hypersecretion of airway mucin, mice's tracheal goblet cells in hyperplasia and mice's intraepithelial mucosubstances were exposed with SO2for3weeks. Effects of orally-administered BJGB and SBPT during 1 week on vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed by using both enzyme-linked immunosorbent assay(ELISA) and staining goblet cells with alcian blue. In vitro experiment, confluent hamster tracheal surface epithelial(HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24hrs and chased for 30 min in the presence of each agent to figure out the effectiveness of 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analyzed. The effects of each agent on contractility of isolated tracheal smooth muscle and effects of each agent on MUC5AC gene expression in cultured HTSE cells were investigated. Also, possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Additionally, effects of BJGB and SBPT on both MUC5AC gene expression in cultured HTSE cells and TNF- or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. Results (1) BJGB and SBPT inhibited hypersecretion of in vivo mucin. SBPT also inhibited the increase the number of goblet cells. However, BJGB did not affect the increase of number of goblet cells; (2) BJGB significantly increased mucin secretion from cultured HTSE cells, without significant cytotoxicity, and chiefly affected the 'mucin' secretion; (3) SBPT did not affect mucin secretion from cultured HTSE cells without significant cytotoxicity, and also did not affect the secretion of the other releseable glycoproteins; (4) BJGB and SBPT did not affect Ach-induced contraction of isolated tracheal smooth muscle; (5) SBPT significantly inhibit the expression levels of MUC5AC gene and BJGB significantly increased the expression levels of MUC5AC gene in both HTSE cells and NCI-H292 cells. Conclusions BJGB and SBPT can not only affect the secretion of mucin but also affect the expression of mucin gene. The author suggests that the effects BJGB and SBPT with their components should be further investigated and it is highly desirable to find from oriental medical prescriptions, novel agents which might regulate hypersecretion of mucin from airway epithelial cells.

  • PDF

Effect of Gamiyukgunja-tang on Secretion and Gene Expression of Airway Mucin (가미육군자탕(加味六君子湯)이 호흡기 뮤신분비 및 뮤신 유전자 발현에 미치는 영향)

  • Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2007
  • In the present study, the author intended to investigate whether Gamiyukgunja-tang (Jiaweiliujunzi-tang, GYGT) significantly affect both mucin release from and MUC5AC gene expression in cultured hamster tracheal surface epithelial (HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of GYGT to assess the effect on 3H-mucin release. Possible cytotoxicity of the agent was assessed by measuring lactate dehydrogenase (LDH) release. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analysed and effect of GYGT on MUC5AC gene expression in cultured HTSE cells were investigated. GYGT did not affect mucin release from cultured HTSE cells. GYGT did not show significant cytotoxicity. GYGT also did not affect the secretion of the other releasable glycoproteins with less molecular weight than mucin. GYGT increased the expression level of MUC5AC gene. We suggest that the effect of GYGT with their components should be further investigated through ongoing research.

Effect of Prunetin on TNF-${\alpha}$-Induced MUC5AC Mucin Gene Expression, Production, Degradation of $I{\kappa}B$ and Translocation of NF-${\kappa}B$ p65 in Human Airway Epithelial Cells

  • Ryu, Jiho;Lee, Hyun Jae;Park, Su Hyun;Sikder, Md. Asaduzzaman;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.205-209
    • /
    • 2013
  • Background: We investigated whether prunetin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced MUC5AC mucin gene expression, production, inhibitory kappa B ($I{\kappa}B$) degradation and nuclear factor kappa B (NF-kB) p65 translocation in human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with prunetin for 30 minutes and then stimulated with TNF-${\alpha}$ for 24 hours or the indicated periods. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effect of prunetin on TNF-${\alpha}$-induced degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65 was investigated by western blot analysis. Results: We found that incubation of NCI-H292 cells with prunetin significantly inhibited mucin production and down-regulated the MUC5AC gene expression induced by TNF-${\alpha}$. Prunetin inhibited TNF-${\alpha}$-induced degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65. Conclusion: This result suggests that prunetin inhibits the NF-${\kappa}B$ signaling pathway, which may explain its role in the inhibition of MUC5AC mucin gene expression and production regulated by the NF-${\kappa}B$ signaling pathway.

Identification and Screening of Gene(s) Related to Susceptibility to Enterotoxigenic Escherichia coli F4ab/ac in Piglets

  • Li, Hejun;Li, Yuhua;Qiu, Xiaotian;Niu, Xiaoyan;Liu, Yang;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.489-493
    • /
    • 2008
  • In 2004, Jorgensen and coworkers proposed the MUC4 gene as a candidate gene of enterotoxigenic Escherichia coli (ETEC) F4ab/ac receptor in piglets and a mutation of $G{\rightarrow}C$ in intron 7 of MUC4 was identified to be associated with the ETEC F4ab/ac adhesion phenotypes. In this study, we used 310 piglets of three breeds (Landrace, Large White and Chinese Songliao Black) to analyze the relationship between this mutation and the F4ab/ac adhesion phenotype. The results show that the genotypes at this site and the ETEC F4ab/ac adhesion phenotypes were not completely consistent, although they are very strongly associated. Among the individuals with genotype CC, which was identified as a resistant genotype to F4ab/ac adhesion, only 72.1% (124/172) were non-adhesive to ETEC F4ab and 77.9% (134/172) were non-adhesive to ETEC F4ac infections. This suggests that this mutation may not be the causative mutation for ETEC F4ab/ac adhesion, rather, the actual causative mutation may be in another gene closely linked to MUC4, or at aother site within the MUC4 gene. Our results also suggest that the receptors of F4ab and F4ac may be determined by two different but closely linked loci. In order to screen other genes related to F4ab/ac adhesion in piglets, the mRNA profiles from six full sib piglets, of which three were adhesive to ETEC F4ab/ac and three non-adhesive, were analyzed by suppression subtractive hybridization (SSH). One up-regulated gene, Ep-CAM, was selected for further analysis based on its role in the intestinal epithelial cells adhesion. Using real-time RT-PCR, we found that the Ep-CAM gene was significantly up-regulated in the piglets adhesive to F4ab/ac. It was mapped to SSC3q11-q14 by radiation hybrid mapping.

Effect of Haepyoijin-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (해표이진탕이 기도 뮤신의 분비, 생성 및 유전자 발현에 미치는 영향)

  • Suk, Yun Hee;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.65-79
    • /
    • 2015
  • Objectives : In this study, effects of haepyoijintang (HIJ) on the increase in airway epithelial mucosubstances of rats and ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Methods : Hypersecretion of airway mucus was induced by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered HIJ during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was evaluated using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of HIJ was evaluated by examining the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN and creatinine concentrations of rats and the body weight gain during experiment, after administering HIJ orally. At the same time, the effect of HIJ on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of HIJ and treated with ATP ($200{\mu}M$), PMA (10 ng/ml), EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to evaluate the effect of HIJ both on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results : (1) HIJ decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) HIJ did not show renal and hepatic toxicities and did not affect body weight gain of rats during experiment. (3) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin gene expression from NCI-H292 cells. Conclusions : The result from the present study suggests that HIJ might control the production and gene expression of airway mucin observed in various respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of HIJ with their diverse components should be further investigated using animal experimental models that can reflect the pathophysiology of airway diseases through future studies.

Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.3
    • /
    • pp.120-126
    • /
    • 2014
  • Background: We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. Results: We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. Conclusion: The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

Significance of Expression of Human METCAM/MUC18 in Nasopharyngeal Carcinomas and Metastatic Lesions

  • Lin, Jin-Ching;Chiang, Cheng-Feng;Wang, Shur-Wern;Wang, Wen-Yi;Kwan, Po-Cheung;Wu, Guang-Jer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.245-252
    • /
    • 2014
  • Human METCAM/MUC18, a cell adhesion molecule (CAM) in the immunoglobulin-like gene super family, plays a dual role in the progression of several epithelium cancers; however, its role in the nasopharyngeal carcinoma (NPC) remains unclear. To initiate the study we determined human METCAM/MUC18 expression in tissue samples of normal nasopharynx (NP), NPCs, and metastatic lesions, and in two established NPC cell lines. Immunoblotting analysis was used for the determination in lysates of frozen tissues, and immunohistochemistry (IHC) for expression in formalin-fixed, paraffin-embedded tissue sections of 7 normal nasopharynx specimens, 94 NPC tissue specimens, and 3 metastatic lesions. Human METCAM/MUC18 was expressed in 100% of the normal NP, not expressed in 73% of NPC specimens (or expressed at very low levels in only about 27% of NPC specimens), and expressed again in all of the metastatic lesions. The level of human METCAM/MUC18 expression in NPC tissues was about one fifth of that in the normal NP and metastatic lesions. The low level of human METCAM/MUC18 expression in NPC specimens was confirmed by a weak signal of RT-PCR amplification of the mRNA. Low expression levels of human METCAM/MUC18 in NPC tissues were also reflected in the seven established NPC cell lines. These findings provided the first evidence that diminished expression of human METCAM/MUC18 is an indicator for the emergence of NPC, but increased expression then occurs with metastatic progression, suggesting that huMETCAM/MUC18, perhaps similar to TGF-${\beta}$, may be a tumor suppressor, but a metastasis promoter for NPC.

Signal Transduction of MUC5AC Expression in Airway Mucus Hypersecretory Disease (기도의 점액 과분비 질환에서 MUC5AC의 발현의 신호 전달 경로에 관한 연구)

  • Shim, Jae Jeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • Background : Mucin synthesis in airways has been reported to be regulated by the epidermal growth factor receptor (EGFR) system. Epidermal growth factor receptor transactivation was identified as a critical element in G-protein-coupled receptors (GPCRs)-induced mitogenic signaling. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. This study was hypothesized that lipopolysaccharide (LPS)-induced mucin production associates with epidermal growth factor receptor transactivation, and MUC5AC production associates with epidermal growth factor receptor transactivation by G-protein-coupled receptors that regulates by metalloproteinase. Method : MUC5AC mucin production was examined in NCI-H292 cells and MUC5AC protein synthesis was assessed using ELISA. For the evaluation of mechanism of LPS-induced MUC5AC production, $TNF{\alpha}$ was measured using ELISA with or without pretreatment of heterotrimeric G-protein inhibitor, mastoparan. MUC5AC protein was measure with pretreatment of polyclonal $TNF{\alpha}$ antibody or mastoparan on LPS-induced MUC5AC production. For the evaluation of relation of G-protein and MUC5AC production, G-protein stimulant, mastopara-7, or matrix metalloproteinase, ADAM10, was added to NCI-H292 cells. MUC5AC protein was measure with pretreatment of polyclonal EGF antibody on mastoparan-7-induced MUC5AC production. Results : LPS alone did not increase significantly MUC5AC production. LPS with $TNF{\alpha}$ induced dose-dependently MUC5AC production in NCI-H292 cells. LPS increased dose-dependently $TNF{\alpha}$ secretion, which was inhibited by mastoparan. LPS with $TNF{\alpha}$-induced MUC5AC production was inhibited by neutralizing polyclonal $TNF{\alpha}$ antibody, mastoparan or AG 1472. Mastoparan-7 or ADAM10 increased dose-dependently MUC5AC production, which was inhibited by polyclonal neutralizing EGF antibody. Conclusion : In LPS-induced MUC5AC synthesis, LPS causes $TNF{\alpha}$ secretion, which induces EGFR expression. EGFR tyrosine kinase phosphorylation result in MUC5AC production. EGF-R transactivation by G-protein-coupled receptors requires matrix metalloproteinase cleavage of proHB-EGF.

Muc5ac Gene Expression Induced by Cigarette Smoke is Mediated Via a Pathway Involving ERK1/2 and p38 MAPK (담배 연기에 의한 Muc5ac 유전자 발현에 관여하는 세포 내 신호 전달 경로로서의 ERK1/2와 p38 MAPK)

  • Kim, Yong Hyun;Yoon, Hyoung Kyu;Kim, Chi Hong;Ahn, Joong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup;Cho, Kyung Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.6
    • /
    • pp.590-599
    • /
    • 2005
  • Object : Cigarette smoking is a major cause of mucus hypersecretion, which is a pathophysiological feature of many inflammatory airway diseases. Mucins, which are an important part of the airway mucus, are synthesized from the Muc gene in airway epithelial cells. However, the signaling pathways for cigarette smoke-induced mucin synthesis are unknown. The aim of this study was to determine the signal pathway for smoking induced Muc5ac gene expression. Methods : A549 cells were cultured and transiently transfected with the Muc5ac promoter fragment. These cells were stimulated with 5% cigarette smoke extract (CSE) alone or with CSE after a pretreatment with various signal transduction pathway inhibitors (AG1478, PD98059 and SB203580). The Muc5ac promoter activity was examined using the luciferase reporter system, and the level of phosphorylated EGFR, ERK1/2, p38 MAPK and JNK were all examined using Western blot analysis. Muc5ac mRNA expression was also examined using reverse transcriptase polymerase chain reactions (RT-PCR). Results : 1. The peak level of luciferase activity of the Muc5ac promoter was observed at 5% concentration and after 3 hours of incubation with the CSE. The level of EGFR phosphorylation and the luciferase activity of the transfected cells caused by the CSE were significantly suppressed by AG1478 or PD98059 (P<0.01). 2. CSE phosphorylated ERK1/2 or p38 MAPK but not JNK. The Muc5ac mRNA expression level was increased by the CSE but that was suppressed by PD98059 or AG1478. 3. The CSE-induced phosphorylation of ERK1/2 was blocked by PD98059 and that of p38 MAPK was blocked by either PD98059 or SB203580. Either PD98059 or SB203580 suppressed the luciferase activity of the transfected cells (P<0.0001). Conclusion : The Muc5ac mRNA expression level was increased by the CSE. The increased CSE-induced transcriptional activity was mediated via EGF receptor activation, which led to ERK1/2 and p38 MAPK phosphorylation.

Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향)

  • Kim, Yoon Young;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.