• Title/Summary/Keyword: MTMS

Search Result 52, Processing Time 0.031 seconds

Response Characteristics of CNT Thin Film on Humidity by Silane Binders (실란 바인더에 따른 탄소나노튜브 박막의 감습 특성)

  • Kim, Seong-Jeen;Lee, Ho-Joong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.196-196
    • /
    • 2010
  • In this work, we deposited SWNTs/silane hybrid thin films by multiple spray-coating on glass substrate, and examined their electrical response for humidity. Generally silane binders which are often used in CNT solution to adhere CNTs to substrate well can be easily functionalized to each own group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. We investigated how silane binders (TEOS,, MTMS and VTMS) in SWNTs hybrid thin films make effect to their electrical response on humidity. As the result, we observed that the resistance in the sample using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

  • PDF

Thermally Curable Organic-inorganic Hybrid Coatings on Ophthalmic Lenses by the Sol-Gel Method (졸-겔법에 의한 안경렌즈의 열경화형 유-무기 하이브리드 코팅)

  • Yu, Dong-Sik;Lee, Ji-Ho;Do, Young-Woong;Park, Seong-Ae;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.587-592
    • /
    • 2006
  • 코팅은 플라스틱의 표면의 물성과 렌즈의 광학적 성능을 높이기 위해 필요하다. Allyl diglycol carbonate계열 렌즈 표면의 물성과 광학적 성능을 개선하기 위하여 3-glycidoxypropyltrimethoxysilane(GPTS), methyltrimethoxysilane(MTMS) 및 tetraethyl orthosilicate(TEOS)의 몰 비를 변화시켜 유-무기 하이브리드 재료로 사용하였다. Sol-gel 공정에 의한 flow코팅하여, $140^{\circ}C$에서 4시간 경화하였다. 코팅 렌즈는 투과율, 부착력, 연필경도, 내마모성, 내온수성 및 내약품성을 평가하였고 GPTS, MTMS 및 TEOS의 몰비가 각각 1: 1: 2일 때 가장 우수한 것으로 나타났다.

  • PDF

Synthesis of Microspheric Silicone Polymer Beads by UV Irradiation and Alkoxy Hydrolysis (UV 조사와 Alkoxy 가수분해 법을 이용한 구형 실리콘 마이크로 고분자 비드의 합성)

  • Park, Seung-Wook;Kim, Jung-Joo;Hwang, Eui-Hwan;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • In this study, the microsphere silicone polymer beads were synthesized by UV irradiation and alkoxy hydrolysis. The coefficient of variation (CV) of microsphere silicone polymer beads were decreased with increasing UV intensity, reaction time. The mean particle diameter, refractive index, and pH value were $4.1{\mu}m$, 1.43 and 7.5, respectively. Also, the true and bulk specific gravity, moisture content were 1.30, and 0.40, below 2%. The mean particle diameter and CV were the lowest at 0.1 wt% hexamethyldisilazane (HMDS) and their roundnesses were $0.95{\sim}0.98{\mu}m$ values. The particle dispersion index of microsphere silicone polymer beads was 4.92 at 450 W, 90 min and the yield was increased to 11.3% at 20 wt% methyltrimethoxysilane (MTMS). The mean particle diameter was decreased with increasing the stirring rate and reaction temperature.

Effect of Types of Silane Coupling Agents on the Properties of Waterborne Polyurethane (실란커플링제 종류 변화가 수분산 폴리우레탄의 특성에 미치는 영향)

  • Shin, Yong-Tak;Hwang, Ji-Hyeon;Hong, Min-Gi;Choi, Jin-Joo;Lee, Won-Ki;Lee, Gyoung-Bae;Yoo, Byung-Won;Lee, Myung-Goo;Song, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • NCO terminated polyurethane prepolymers were synthesized from isophorone diisocyanate(IPDI), poly (tetramethylene glycol)(PTMG) and dimethylol propionic acid(DMPA). Subsequently, waterborne polyurethanes were prepared by capping the NCO groups of polyurethane prepolymers with different types of silane coupling agents, such as methyltrimethoxysilane(MTMS), glycidoxypropyl trimethoxysilane(GPTMS), methacryloxypropyl trimethoxysilane (MPTMS) and aminopropyl triethoxysilane(APS). The average particle size of the waterborne polyurethane solutions was increased by adding silane coupling agents. Also, the coating films prepared from GPTMS, MPTMS and APS, exhibited better pencil hardness than those from pure waterborne polyurethane. On the other hand, the coating films from MTMS did not show an improved pencil hardness than those from pure waterborne polyurethane.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process

  • Mahadik, D.B.;Jung, Hae-Noo-Ree;Lee, Yoon Kwang;Lee, Kyu-Yeon;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • The flexible and superhydrophobic properties of silica aerogels are extremely important material for thermal insulation and oil spill cleanup applications for their long-term use. Flexible silica aerogels were synthesized by using a two-step sol-gel process with precursors, methyltrimethoxysilane (MTMS) followed by supercritical drying. Silica aerogels were prepared at different molar ratio of methanol to MTMS (M). It was observed that the silica aerogels prepared at M=28 were monolithic but inelastic in nature, however, for M=35, the obtained aerogels were monolithic, elastic in nature with less shrinkage. The microstructural studies were carried out using scanning electron microscopy and surface area measurements. The hydrophobicity was confirmed by Fourier transform Infrared spectroscopy and water contact angle measurements. The detailed insight mechanism for flexible nature of silica aerogels and hydrophobic behavior were studied.

Homogeneous Incorporation of Dimethylsiloxane into Polymethylsilsesquioxane (Dimethylsiloxane의 균일 도입에 의한 PMSSQ의 인성 강화)

  • 안창훈;석상일;진문영
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.104-104
    • /
    • 2003
  • 다양한 구조를 갖는 polysilsesquioxane은 열적, 전기적, 기계적 성질이 우수하여 차세대 고집적 반도체용 저 유전율 층간 절연막 재료로 부각되고 있으며, 유/무기 하이브리드 재료로 많은 연구 대상이 되고 있다. 그러나 PMSSQ(polymethylsilsesquioxane)는 취성으로 인한 반도체 제조의 CMP 공정에서 미세 크렉 발생의 위험이 있으므로 막의 인성 강화가 요구되고 있다. 이를 위하여 PMSSQ의 취성을 보완하기 위한 목적으로 선형 분자인 dimethylsiloxane을 10-20mo1% 도입하고자 하였다. 이때 도입된 dimethylsiloxane기가 PMSSQ에 균일하게 분포하지 않으면 실리콘 기판에 코팅 후 약 43$0^{\circ}C$의 열처리 공정 중에 열분해 되는 위험이 있다. 이에 따라 본 연구에서는 dimethylsiloxane기의 열분해에 의한 문제를 최소화하기 위하여 출발 물질인 MTMS(methyltrimethoxysilane)와 DMDMS(dimethyldimethoxysilane)과의 가수분해 속도차이를 고려한 단계(step) 반응법과 MTMS 와 DMDES(dimethyldiethoxysilane)를 사용한 리간드 교환법(ligand exchange)으로 dimethylsiloxane이 PMSSQ에 도입된 공중합체를 합성하였다. 각 합성 방법에 따라 합성된 공중합 PMSSQ의 특성을 TGA, TG-IR, $^1$H-NMR, $^{29}$ Si-NMR과 in-situ IR을 통하여 분석하였다. 또한 dimethylsiloxane 도입 양 및 상기 제조 방법에 따라 합성한 공중합체를 Si 기판위에 코팅하여 43$0^{\circ}C$에서 열처리한 후 코팅막의 강도, 두께 및 굴절율 변화를 ellipsometry 와 nanoindenter로 분석하였다.

  • PDF

The Variation of Response on Humidity in CNT Thin Film by Silane Binders (실란 바인더에 의한 탄소나노튜브 박막의 감습 특성 변화)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.782-787
    • /
    • 2010
  • Recently the solution-based thin film technology has often been treated in the field of device fabrication owing to easy process and convenience for the development of various semiconductor devices and sensors. We deposited on glass substrate single-walled carbon nanotubes (SWNTs)/silane hybrid thin films by multiple spray-coating which is one of solution-based processes, and examined their electrical response for humidity. Generally silane binders which are often mixed in carbon nanotube (CNT) solution to adhere CNTs to substrate well form easily each own functionalized group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. In this work, we investigated how silane binders (TEOS (tetraethoxy silane), MTMS (methyltrimethoxysilane) and VTMS (vinyltrimethoxysilane)) in CNT thin films make effect to their electrical response on humidity. As the result, we found that the resistance in the samples using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

Preparation of the Anti-Reflective(AR) Coating Film by Sol-Gel Method to Improve the Efficiency of Solar Cell (태양전지 효율 향상용 졸-겔 법에 의한 반사방지 코팅막의 제조)

  • Kim, Hyosub;Kim, Youngho;Choi, Jaeyune
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.145-150
    • /
    • 2014
  • This study investigates the preparation of anti-reflective (AR) coating film to improve the efficiency of solar cell. The AR coating film was successfully obtained by dip-coating with AR coatings prepared by sol-gel method. Fluoroalkylsilane was additionally introduced into the coatings to give the self-cleaning effect of AR coating film. We performed the abrasion test, pencil scratch hardness test and cross-cut test to identify the mechanical strength of AR coating film. As the results, the transmittance of AR coating films with 9.07, 18.13 and 27.20 of IPA/MTMS molar ratios were 93.1, 93.6 and 95.3%, respectively. The water contact angle and transmittance of AR coating film increased by the introduction of hydrophobicity. The prepared AR coating film shows the high level of abrasion, hardness and adhesion. The IPA/MTMS molar ratio of 27.20 and the withdrawing speed range of 0.20 ~ 0.28cm/sec are the optimal coating condition in terms of the transmittance and mechanical strength of AR coating film.

Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring (생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발)

  • Jung, Chang Hwan;Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).