• Title/Summary/Keyword: MTF Compensation

Search Result 15, Processing Time 0.033 seconds

Effect of the Signal-to-Noise Power Spectra Ratio On MTF compensated EOC images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.202-207
    • /
    • 2002
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are generated and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used in MTF compensation for EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise power spectra ratio is the only factor in the determination of Wiener filter. In this paper, MTF compensation in IRPE at KGS is introduced and MTF compensated EOC 1R images are generated using Wiener filters with various signal-to-noise power spectra ratios. MTF compensated EOC 1R images are correlated with EOC 1R images for observing linearities between them. As a result, the effect of signal-to-noise power spectra ratio is shown on MTF compensated EOC 1R images.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Optical Design for Satellite Camera with Online Optical Compensation Movements (온라인 광학보정장치를 적용한 위성카메라의 광학설계)

  • Jo, Jeong-Bin;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • In this study, optical design for small satellite camera equipped with online optical compensation movements has been conducted. Satellite camera equipped with compensation movements at M2 mirror and focal plane can guarantee the MTF performance through the focal plane image stabilization and the on-orbit optical alignment. The designed optical system is schmidt-cassegrain type that has M1 mirror of a diameter 200mm, GSD 3.8m at an altitude of 700km, and 50 % MTF performance. The performance of the designed optical system has been analyzed through the method of ray aberration curve, spot diagram, and MTF. It has been found by the optical performance analysis that the designed optical system satisfies the optical requirements of satellite camera equipped with online optical compensation movements.

MTF Assessment and Image Restoration Technique for Post-Launch Calibration of DubaiSat-1 (DubaiSat-1의 발사 후 검보정을 위한 MTF 평가 및 영상복원 기법)

  • Hwang, Hyun-Deok;Park, Won-Kyu;Kwak, Sung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.573-586
    • /
    • 2011
  • The MTF(modulation transfer function) is one of parameters to evaluate the performance of imaging systems. Also, it can be used to restore information that is lost by a harsh space environment (radioactivity, extreme cold/heat condition and electromagnetic field etc.), atmospheric effects and falloff of system performance etc. This paper evaluated the MTF values of images taken by DubaiSat-1 satellite which was launched in 2009 by EIAST(Emirates Institute for Advanced Science and Technology) and Satrec Initiative. Generally, the MTF was assessed using various methods such as a point source method and a knife-edge method. This paper used the slanted-edge method. The slantededge method is the ISO 12233 standard for the MTF measurement of electronic still-picture cameras. The method is adapted to estimate the MTF values of line-scanning telescopes. After assessing the MTF, we performed the MTF compensation by generating a MTF convolution kernel based on the PSF(point spread function) with image denoising to enhance the image quality.

A MTF Compensation for Satellite Image Using L-curve-based Modified Wiener Filter (L-곡선 기반의 Modified Wiener Filter(MWF)를 이용한 위성 영상의 MTF 보상)

  • Jeon, Byung-Il;Kim, Hongrae;Chang, Young Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.561-571
    • /
    • 2012
  • The MTF(Modulation Transfer Function) is one of quality assesment factors to evaluate the performance of satellite images. Image restoration is needed for MTF compensation, but it is an ill-posed problem and doesn't have a certain solution. Lots of filters were suggested to solve this problem, such as Inverse Filter(IF), Pseudo Inverse Filter(PIF) and Wiener Filter(WF). The most commonly used filter is a WF, but it has a limitation on distinguishing signal and noise. The L-curve-based Modified Wiener Filter(MWF) is a solution technique using a Tikhonov regularization method. The L-curve is used for estimating an optimal regularization parameter. The image restoration was performed with Dubaisat-1 images for PIF, WF, and MWF. It is found that the image restored with MWF results in more improved MTF by 20.93% and 10.85% than PIF and WF, respectively.

선형 CCD를 이용한 MTF방법에 의한 카메라 렌즈 초점거리의 출정 및 보정 시스템 개발

  • 박희재;이석원;김왕도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.71-80
    • /
    • 1998
  • A computer aided system has been developed for the focal length measurement/compensation in camera manufacture. Signal data proportional to light intensity is obtained and sampled very rapidly from the line CCD. Based on the measured signal, the MTF performance is calculated, where the MTF is the ratio of magnitude of the output image to the input image. In order to find the optimum MTF performance, an effcient algorithm has been implemented using the least squares technique. The developed system has been applied to a practical camera manufacturing process, and demonstrated high productivity with high precision.

  • PDF

A Modulation Transfer Function Compensation for the Geostationary Ocean Color Imager (GOCI) Based on the Wiener Filter

  • Oh, Eunsong;Ahn, Ki-Beom;Cho, Seongick;Ryu, Joo-Hyung
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.321-326
    • /
    • 2013
  • The modulation transfer function (MTF) is a widely used indicator in assessments of remote-sensing image quality. This MTF method is also used to restore information to a standard value to compensate for image degradation caused by atmospheric or satellite jitter effects. In this study, we evaluated MTF values as an image quality indicator for the Geostationary Ocean Color Imager (GOCI). GOCI was launched in 2010 to monitor the ocean and coastal areas of the Korean peninsula. We evaluated in-orbit MTF value based on the GOCI image having a 500-m spatial resolution in the first time. The pulse method was selected to estimate a point spread function (PSF) with an optimal natural target such as a Seamangeum Seawall. Finally, image restoration was performed with a Wiener filter (WF) to calculate the PSF value required for the optimal regularization parameter. After application of the WF to the target image, MTF value is improved 35.06%, and the compensated image shows more sharpness comparing with the original image.

MTF Compensation for KOMPSAT-1 EOC Images (다목적 실용위성 1호 EOC 영상에 대한 MTF 보상)

  • 강치호;최해진
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.22-25
    • /
    • 2003
  • EOC(Electro Optical Camera)는 한반도 및 전 세계 육지 영역 관측용으로 설계되었다. EOC는 1999년 12월 21일 발사된 다목적 실용위성 1호에 탑재되어 가시광 대역(510 ~730nm)으로 입사하는 복사 정보를 수집해 왔다. 획득된 EOC 영상 자료는 다목적 실용위성 1호의 탑재체 자료전송 시스템(Payload Data Transmission System, PDTS)을 통해 지상으로 전송되며, 수신된 자료에 대한 방사 보정 및 기하 보정 등의 일련의 전처리(Pre-processing) 과정을 거쳐 EOC 표준 영상이 생성된다. EOC 영상에 대한 MTF 보상은 방사 보정 후 수행될 수 있으며, 다목적 실용위성 지상국에서는 사용자의 요구에 따라 EOC 영상에 대한 MTF 보상을 수행하고 그 결과를 제공한다. MTF 보상은 EOC의 점 확산 함수(Point Spread Function)를 이용하여 수행되며, 현재 Wiener 필터를 이용하여 수행되고 있다. 본문에서는 현재 다목적 실용위성 1호 영상처리시스템의 EOC 영상에 대한 MTF 보상을 소개하고, EOC의 점 확산 함수에 기초하여 역 필터(Inverse Filter) 및 의사 역 필터(Pseudo Inverse Filter)를 제작, EOC 영상에 대한 MTF 보상 수행 후 그 결과를 Wiener 필터를 이용한 결과와 비교, 분석한다.

  • PDF

REFOCUSING FOR ON-ORBIT MTF COMPENSATION OF REMOTE SENSING CAMERA

  • Jang Hong-Sul;Jeong Dae-Jun;Lee Seunghoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.601-603
    • /
    • 2005
  • Refocusing methods are used to compensate optical performance degradation of high resolution satellite camera during on-orbit operation. Due to mechanical vibration during launch and thermal vacuum environment of space where camera is exposed, the alignment of optical system may have error. The focusing error is dominant of misalignment and caused by the de-space error of secondary mirror of catoptric camera, which is most sensitive to vibration and space environment. The high resolution camera of SPOT, Pleiades and KOMPSAT2 have refocusing device to adjust focusing during orbital operation while QuickBird of US does not use on orbit refocusing method. For the Korsch type optical configuration which is preferred for large aperture space remote sensing camera, secondary mirror and folding mirror are available as refocusing element.

  • PDF