• Title/Summary/Keyword: MTBE(MTBE)

Search Result 150, Processing Time 0.023 seconds

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.

Evaluation of Intrinsic Bioremediation of Methyl Tert-butyl Ether (MTBE) Contaminated Groundwater

  • Chen, Colin S.;Tien, Chien-Jun;Zhan, Kai-Van
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.9-17
    • /
    • 2014
  • This paper reported the use of real-time polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and the culture-based method in the intrinsic bioremediation study at a petroleum contaminated site. The study showed that phenol hydroxylase gene was detected in groundwater contaminated with benzene, toluene, ethylbenzene, xylene isomers (BTEX) and methyl tert-butyl ether (MTBE). This indicated that intrinsic bioremediation occurred at the site. DGGE analyses revealed that the petroleum-hydrocarbon plume caused the variation in microbial communities. MTBE degraders including Pseudomonas sp. NKNU01, Bacillus sp. NKNU01, Klebsiella sp. NKNU01, Enterobacter sp. NKNU01, and Enterobacter sp. NKNU02 were isolated from the contaminated groundwater using the cultured-based method. Among these five strains, Enterobacter sp. NKNU02 is the most effective stain at degrading MTBE without the addition of pentane. The MTBE biodegradation experiment indicated that the isolated bacteria were affected by propane. Biodegradation of MTBE was decreased but not totally inhibited in the mixtures of BTEX. Enterobacter sp. NKNU02 degraded about 60% of MTBE in the bioreactor study. Tert-butyl alcohol (TBA), acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry during MTBE degraded by the rest cells of Enterobacter sp. NKNU02. The effectiveness of bioremediation of MTBE was assessed for potential field-scale application.

Vapor-Liquid Equilibria for the Systems of MTBE-Methanol, MTBE-n-Heptane, n-Heptane-Methanol by Using Head Space Gas Chromatography (Head Space Gas Chromatography를 이용한 MTBE-Methanol, MTBE-n-Heptane, n-Heptane-Methanol계의 기액평형)

  • Lee, Ju-Dong;Lee, Tae-Jong;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.706-713
    • /
    • 1994
  • Isothermal vapor-Liquid equilibrium data have been measured for binary systems MTBE-methanol, MTBE-n-heptane, and methanol-n-heptane at $45^{\circ}C$ and $65^{\circ}C$ by using head space gas chromato-graphy (H.S.G.C). Among these systems a minimum azeotrope was observed in both of MTBE-methanol system and n-heptane-methanol system. Particularly n-heptane-methanol system has a heterogeneous minimum azotrope since it has an immisible region. These equilibrium data were correlated with the excess Gibbs energy model, and the thermodynamic consistency test was also carried out by using Redlich-Kister equation.

  • PDF

Remediation of groundwater contaminated with MTBE using micellar solubilization

  • 백기태;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.151-154
    • /
    • 2001
  • To assess the remediation possibility of groundwater contaminated with MTBE, micellar solubilization by various surfactants was evaluated. Micellar solubilization is basic phenomena to apply micellar enhanced ultrafiltration for groundwater remediation contaminated with MTBE. Sodium dodecyl sulfate (SDS) shows the best removal efficiency among various nonionic, cationic and anionic surfactants. Molar ratio of SDS to MTBE was the most important factor for removal of MTBE using micellar solubilization. With the ratio of more than 13, the removal efficiency was saturated to 55%.

  • PDF

유류오염부지내 MTBE 분포 및 이동 특성

  • 고경석;전치완;조춘희;김통권
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.381-384
    • /
    • 2004
  • To know the occurrence and distribution of MTBE in groundwater, the analysis of groundwater around petroleum spill area was executed. The groundwaters of the 4 study sites are severely contaminated with MTBE and has the highest values of 650mg/L. The plume length of MTBE is longer than that of BTEX in D site and it is caused by the high solubility and low sorption capacities of MTBE.

  • PDF

Evaluation of MTBE-Contaminated Soil by Soil Enzyme Assay (Soil Enzyme Assay에 의한 MTBE오염 토양 평가)

  • 이은정;안윤주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.211-214
    • /
    • 2004
  • MTBE로 오염된 토양에서 생태독성학적 접근 방법으로 3가지 토양 효소의 활성도를 측정해 보았다. MTBE의 잠재적 위험성으로 인한 논란은 계속되고 있으나 토양 오염에 대한 지표로써 토양 효소 활성도의 사용타당성 여부에 대한 실험은 이전에 행해지지 않았다. 따라서 중금속 오염 토양에 대해 좋은 지표로 사용되고 있는 토양 미생물 효소의 활성도를 MTBE에 적용하여 실험해 보았다. 사용한 토양 효소는 Acid Phosphotase, $\beta$-Glucosidase 그리고 Arysulfatase였다. 그러나 실험 결과 MTBE로 오염된 토양의 경우 중금속으로 오염된 토양에 비해 토양 미생물 활성도의 감소가 매우 적었다. 따라서 MTBE의 오염 토양의 경우 본 연구에서 측정된 효소의 활성도는 좋은 지표로 적합하지 않다는 것을 확인했다.

  • PDF

A Study on the Factors of Fenton-oxidation of MTBE in Water and Soil (Fenton-oxidation에 의한 MTBE(Methyl Tertiary Butyl Ether)처리시의 영향인자에 관한 연구)

  • 전은미;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 1998
  • The treatment of soils and water contaminated with MTBE using the Fenton oxidation was investigated. The effects of dosage of $H_{2}O_{2}$, and Fe$^{2+}$ concentrations, and solution pH on transformation and mineralization in soil were evaluated. Generation of TBA and acetone following Fenton-oxidation of MTBE in water and generation of acetone following Fenton-oxidation of TBA were observed. Therefore TBA and acetone are degradation intermediates of MTBE. There was a large difference of treatment efficiency in Fenton oxidation of MTBE between soil and water system. This may be caused by the complex nature of soil, soil organic matter which can consumed OH $\cdot$ radicals, and interacting with inorganic-soil constituents. The pH of soil was observed to have a significant effect on the chemical oxidation efficient of MTBE in soil The data demonstrated that optimal pH range were pH 3~4 and around 6. The soil batch studies demonstrated that treatment efficiency of MTBE was enhanced by adding additional ferrous salts but Fenton-oxidation occurred in no additional iron which indicated that iron in soil can catalyze the Fenton-oxidation. The most effective parameter of Fentonoxidation was $H_{2}O_{2}$/Fe$^{2+}$ ratio which theocratical ratio is 0.5. The optimal range of this ratio was found to be 0.6~2.3. In evaluating effect of $H_{2}O_{2}$ dosage on treatment efficiency, the increase of $H_{2}O_{2}$ did not always lead to increase of decompositions of MTBE in soil. Fenton oxidation was effective in destroying MTBE in aqueous extracts of contaminated soil and water. Experimental data provided evidence that the Fenton oxidation can effectively remediate MTBE-contaminated water and soil.

  • PDF

A Study on the Laboratory Scale Ultrasound Treatment System for Methyl tert-Butyl Ether Polluted Groundwater (Methyl tert-Butyl Ether 오염 지하수 처리를 위한 실험실 규모 초음파 분해 시스템 연구)

  • Kim, Heeseok;Yang, Inho;Cho, Hyeonjo;Her, Nam Guk;Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.747-753
    • /
    • 2010
  • A series of experiments with a laboratory scale ultrasound treatment system for MTBE polluted groundwater was performed to increase the efficiency of MTBE degradation in groundwater. This study evaluated several factors to increase the efficiency of MTBE treatment for artificial and natural groundwater. The treated volume of groundwater, ultrasound frequency and power, and pollutant concentrations have been changed to evaluate its effects on the degradation efficiency of MTBE in batch and continuous flow reactor. For the specific experimental conditions on this paper, MTBE degradations are more efficient at 580 kHz than those at 1 MHz. The efficiency of MTBE degradation is proportional to the intensity of ultrasound power per unit volume of MTBE polluted groundwater. The concentration of ions in groundwater does not much affect the efficiency of MTBE degradation. The $1^{st}$ order degradation constant of MTBE for different power per unit volume at 580 kHz shows linear relationship at same concentration. The $1^{st}$ order degradation constant for 0.1 mM MTBE solution is higher than that for 1 mM MTBE solution. These experimental results could be helpful to seek optimal conditions for relatively large volume of polluted groundwater treatment.

Effect of Electron Acceptors on the Anaerobic Biodegradation of BTEX and MTBE at Contaminated Sites (전자 수용체가 BTEX, MTBE로 오염된 토양의 혐기성 자연정화에 미치는 영향)

  • Kim, Won-Seok;Kim, Ji-Eun;Baek, Ji-Hye;Sang, Byoung-In
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.403-409
    • /
    • 2005
  • Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by BTEX and MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc. In oil-contaminated environments, anaerobic biodegradation of BTEX and MTBE depended on the concentration and distribution of terminal electron acceptor. In this study, effect of electron acceptor on the anaerobic biodegradation for BTEX and MTBE-contaminated soil was investigated. This study showed the anaerobic biodegradation of BTEX and MTBE in two different soils by using nitrate reduction, ferric iron reduction and sulfate reduction. The soil samples from the two fields were enriched for 65 days by providing BTEX and MTBE as a sole carbon source and nitrate, sulfate or iron as a terminal electron acceptor. This study clearly shows that degradation rate of BTEX and MTBE with electron acceptors is higher than that without electron acceptors. Degradation rate of Ethylbenzene and Xylene is higher than that of Benxene, Toluene, and MTBE. In case of Benzene, Ethylbenzene, and MTBE, nitrate has more activation. In case of Toluene and Xylene, sulfate has more activation.

A Study on the Degradation Properties of MTBE in Solution using Ultrasound (초음파를 이용한 수용액 속의 MTBE 분해 특성 연구)

  • Kim, Heeseok;Yang, Inho;Oh, Jeill;Her, Nam Guk;Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.522-529
    • /
    • 2009
  • To supply safe drinking water to areas lacking in water supply and drainage system, such as rural area and military bases in proximity to Demilitarized Zone, effective method for treating organic contaminants such as MTBE is required. This study focuses on seeking optimal conditions for effective degradation of MTBE using a bath type ultrasound reactor. Effectiveness of MTBE degradation by ultrasound is dependent on the frequency, power, temperature, treatment volume, initial concentration, catalyst, etc. In this study the degradation rate of MTBE by ultrasound was proportional to power/unit volume ratio and removal is relatively more efficient for 0.1 mM than for 1 mM of MTBE solution. Efficiency of ultrasound treatment for 1 mM MTBE solution was enhanced under bath temperature of $30^{\circ}C$ compared to $4^{\circ}C$, but the temperature effect was negligible for 0.1 mM MTBE solution. Also for 0.1 mM MTBE solution, effect of catalyst such as $TiO_2$ and $Fe^0$ on treatment speed was negligible, and zeolite even increases the time taken for the degradation. Under these specific experimental conditions of this study, the most determinant factor for degradation rate of MTBE in solution was frequency and power of ultrasound. The results have shown that a continuous ultrasound reactor system can be used for small scale remediation of organically polluted groundwater, under optimal conditions.