• Title/Summary/Keyword: MT1-MMP

Search Result 26, Processing Time 0.033 seconds

Expression of Membrane-Type Matrix Metalloproteinase 1 and 2 in Mouse Oocytes, Embryos, Ovary and Oviduct (생쥐 난자와 배아 및 난소와 수란관의 Membrane-Type Matrix Metalloproteinase 1 및 2의 유전자 발현)

  • 김지영;이희진;김소라;김해권;강성구;이승재;조동제
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • Membrane type matrix metalloproteinases(MT-MMPs) have been suggested to play an important role during structural remodeling of various tissue. Expression patterns of MT1-MMP and MT2-MMP mRNAs were investigated in oocytes, embryos, ovary and oviduct of mouse during their differentiation or periovulatory period using RT-PCR technique. Both cDNA products of MT1- and MT2-MMP of immature oocytes were barely discernable with a minimum amount but the expressions were distinct in mature oocytes regardless that they were matured in vivo or in vitro. MT2-MMP was not expressed by 2-cell embryos but was expressed by 4-cell stage embryos. From the morula stage untill hatched blastocyst stage, embyos showed intesnse expression of MT2-MMP with a sudden increase at blastocyst stage. While mouse ovarian tissues showed both expression of MT1- and MT2-MMP, there was no stage-specific difference throughout the estrous cycle. Mouse oviducts also exhibit constant amount of both MT1- and MT2-MMP expressions throughout periovulatory period, i.e., before or after ovulation. These observations lead to suggest that the differential expressions of maternal MT1- and MT2-MMP during meiotic resumption of mouse oocytes and embryonic expression of MT2-MMP particularly at blastocyst stage might play a role in the differentiation of mouse oocytes and/or embryos. The precise function of MT1- and MT2-MMP with regards to their participation in the remodeling of ovarian and oviductal tissues remains in a question.

  • PDF

Activities of Recombinant MT1-MMP Expressed in PANC-1 Cells. (PANC-1세포에서 발현된 재조합 MT1-MMP의 효소 활성)

  • Kim, Hye-Nan;Chung, Hye-Shin
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.422-425
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated zinc-dependent endoproteinase involved in extracellular matrix remodeling. MT1-MMP hydrolyzes ECM proteins like collagen and is involved in cancer cell migration and metastasis. Caveolins are integral membrane proteins and play a role in formation of caveolae, specialized membrane microdomains involved in clathrin-independent endocytosis. Recombinant MT1-MMP was transiently expressed in PANC-1 cells. Cells expressing recombinant MT1-MMP were able to hydrolyze collagen and migrate on collagen coated trans-well. Both subjacent collagen degradation and the cell migration conferred by recombinant MT1-MMP were inhibited by co-transfection of plasmids containing caveolin-1 cDNA. The results support that MT1-MMP is localized in lipid raft of the membrane and MT1-MMP activities in invasive cells could be inhibited by caveolin.

Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity

  • Kim, Hye-Nan;Chung, Hye-Shin
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.858-862
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent proteinase found in cholesterol-rich lipid rafts on the plasma membrane. MT1-MMP hydrolyzes extracellular matrix (ECM) proteins, activates pro-matrix metalloproteinase-2 (proMMP-2) and plays an important role in ECM remodeling, cancer cell migration and metastasis. The role of caveolin-1, an integral protein of caveolae, in the activation of MT1-MMP remains largely unknown. Here, we show that the expression of caveolin-1 attenuates the activation of proMMP-2, reduces proteolytic cleavage of ECM and inhibits cell migration. We utilized the cytoplasmic tail domain deletion (${\Delta}CT$) or the E240A mutant of MT1-MMP. Co-expression of caveolin-1 with the wild-type or the ${\Delta}CT$ MT1-MMP decreased the proMMP-2 activation and inhibited collagen degradation and cell migration. Caveolin-1 had no effect on the catalytically inert E240A MT1-MMP. Our findings suggest that caveolin-1 is essential in the down-regulation of MT1-MMP activity by promoting internalization from the cell surface.

THE EFFECT OF THE GENISTEIN ON THE PROLIFERATION OF HT1080 AND EXPRESSION OF MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) mRNA (Genistein이 사람 섬유육종 세포주 증식 및 Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) mRNA 발현에 미치는 영향)

  • Kang, Jin-Han;Myoung, Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • Matrix metalloproteinases have long been viewed as ideal candidates for proteinases that enables tumor cells to permeated basement membrane defenses and invade surrounding tissue. There is growing evidence that the MMPs have an expanded role, as they are important for the creation and maintenance of a microenvironment that facilitates growth and angiogenesis of tumors at primary and metastatic sites. MT-MMPs are not secreted but instead remaining attached to cell surfaces. Although not all of the MT-MMPs are fully characterized, MT-MMPs have important role in localizing and activating secreted MMPs. The MMP genes are transcriptionally responsive to a wide variety of oncogene, growth factors, cytokine, and hormones. Currently, a number of MMP inhibitors are being developed and some have reached clinical trials as anti-metastatic or anti-cancer therapies. MT1-MMP is involved in the activation of proMMP-2. MT1-MMP is significant not only as a tumor marker but as a new target for chemotherapy against cancer. The purpose of this study was to evaluate the effects of protein kinase C inhibitor(genistein) on the proliferation of HT1080 and expression of MT1-MMP mRNA. Human fibrosarcoma cell line HT1080 was cultured and divided 2 groups. The experimental group was treated with $100{\mu}M$ genistein and incubated 12h, 24h for $[3^H]-thymidine$ uptake assay and northern hybridization individually. And the control group was treated with same amount of PBS for the above procedures. $[3^H]-thymidine$ incorporation was measured with ${\beta}$ ray detector. And RT-PCR and northern blotting for MT1-MMP mRNA was performed. The results were as follows 1. $[3^H]-thymidine$ uptake was reduced in experimental group with statistical significance. 2. MT1-MMP mRNA expression was significantly reduced in experimental group. These results showed that protein kinase C inhibitor (genistein) inhibited proliferation of HT1080 and almost completely blocked transcription of MT1-MMP mRNA. So, it is possible to use the protein kinase inhibitor (genistein) as anti-metastatic and anti-proliferative agent.

  • PDF

Stromelysin-1 and Membrane type-MMP-1 Expressions in Human Chronic Periodontitis with Type 2 Diabetes Mellitus (단순 만성 치주염 환자와 제 2형 당뇨병을 동반한 만성 치주염 환자에서 Stromelysin-1와 Membrane type-MMP-1 Expressions)

  • Ryu, Sang-Ho;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.629-638
    • /
    • 2008
  • Purpose: The purposes of this study were to compare and quantify the expression of Stromelysin-1 and MT-MMP-1 in the gingival tissues of patients with type 2 diabetes mellitus(DM) and healthy adults with chronic periodontitis. Materials and Methods: Gingival tissue samples were obtained during periodontal surgery or tooth extraction. According to the patient's systemic condition & clinical criteria of gingiva, each gingival sample was devided into three groups. Group 1 (n=8) is clinically healthy gingiva without bleeding and no evidence of bone resorption or periodontal pockets, obtained from systemically healthy 8 patients. Group 2 (n=8) is inflammed gingiva from patients with chronic periodontitis. Group 3 (n=8) is inflammed gingiva from patients with chronic periodontitis associated with type 2 DM. Tissue samples were prepared and analyzed by Western blotting. The quantification of Stromelysin-1 and MT-MMP-1 were performed using a densitometer and statistically analyzed by one-way ANOVA followed by Tukey test. Results: In the analysis of expression levels, Stromelysin-1 and MT-MMP-1 expressions were similar in group 1 and 2. Stromelysin-1 and MT-MMP-1 expressions was more increased in group 3 than group 1, 2. The difference between group 3 and group 1, 2 was statistically significant. Also, in the interrelationship of Stromelysin-1 and MT-MMP-1 expressions, expressions of Stromelysin-1 and MT-MMP-1 showed increasing tendency in chronic periodontitis associated with type 2 DM and it seems that the MT-MMP-1 expressions were increasing in proportion to Stromelysin-1 expressions. Conclusion: It is suggested that Stromelysin-1 and MT-MMP-1 may be partly involved in the progression of periodontal inflammation associated with type 2 DM, as related to a metabolism of other factors, such as AGE, plasmin and other inflammatory mediators. Therefore, the expression levels of Stromelysin-1 and MT-MMP-1 can be inflammatory markers of periodontal inflammed tissue with type 2 DM.

Inhibitory Effect of Naringenin on MMP-2, -9 Activity and Expression in HT-1080 Cells (HT1080 세포주에서 naringenin의 MMP-2, -9 효소 활성 및 발현 억제 효과)

  • Chae, Soo-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Naringenin, major one of the citrus flavonoids, have been identified that exert antioxidative, anticancer effects. The present study investigated the effects of naringenin on tumor invasion and matrix metalloproteinases(MMPs) activities. Naringenin inhibited cell invasion of HT-1080 fibrosarcoma cells in a dose-dependent manner. The activities of MMP-2 and MMP-9 were inhibited by naringenin as demonstrated by gelatin zymography assay. Furthermore, the amounts of MMP-2, MMP-9, and MT1-MMP mRNA were analyzed in the cells. MMP-2, MMP-9, and MT1-MMP mRNA expression were suppressed by naringenin with time and dose-dependent. These results demonstrate that anti-metastatic activities of naringenin resulted from blocking of invasion of the HT-1080 cells. Taken together, the results of this studies provide evidence that naringenin possess an anti-metastatic activity.

Effects of Ibandronate on the Expression of Matrix Metalloproteinases in Human U2OS Osteosarcoma Cells (사람 U2OS 골육종 세포에서 Matrix Metalloproteinase의 발현에 Ibandronate가 미치는 영향)

  • Jung, Sung-Taek;Seo, Hyoung-Yeon;Xin, Zeng-Feng;Kim, Yang-Kyung;Kim, Hyung-Won
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2009
  • Background: Osteosarcoma is one of the most common primary malignant tumors of bone occurring mainly in children and adolescents. Although surgery combined with chemotherapy has markedly improved patient survival during the last years, the use of anticancer drugs is still associated with serious problem, such as the frequent acquisition of drug-resistant phenotypes and occurrence of "secondary malignancies". Several solid tumors display enhanced expression of matrix metalloproteinases (MMPs), and recently clinical trials have been initiated on MMP-inhibitors. On the other hand, bisphosphonates (BPs) are inhibitors of bone resorption, and widely used to treat osteoclast-mediated bone diseases. Also they appear to possess direct antitumor activity. Methods: One osteosarcoma cell line (U2OS) was treated with ibandronate (0, 0.1, 1, $10{\mu}M$) for 48 hours. Cell viabilities were determined using MTT assay, the mRNA levels of MMP-2 and MT1-MMP were detected by reverse-transcription polymerase chain reaction, the amount of MMP-2 and MT1-MMP protein were measured by Westernblot, the activities of MMP-2 were observed by Gelatin zymography, and Matrigel invasion assays were used to investigate the invasive potential of osteosarcoma cell lines before and after ibandronate treatment. Results: The invasiveness of U2OS cell line was reduced dose-dependently following 48 hour treatment of up to $10{\mu}M$ of the ibandronate at which concentration no cytotoxicity occurred. Furthermore, the gelatinolytic activities and protein and mRNA levels of MMP-2 and MT1-MMP were also suppressed by increasing ibandronate concentrations. Conclusion: Given that MMP-2 is instrumental in tumor cell invasion, it is very likely that the reduction in osteosarcoma cell invasion by ibandronate is a consequence, at least in part, of suppressed expression of both MMP-2 and MT1-MMP. Isolation of a molecule (s) responsible for the bisphosphonate inhibition of tumor cell invasion would pave the way for the development of a new generation of metastasis inhibitors.

  • PDF

Type I Collagen-induced Pro-MMP-2 Activation is Differentially Regulated by H-Ras and N-Ras in Human Breast Epithelial Cells

  • Kim, In-Young;Jeong, Seo-Jin;Kim, Eun-Sook;Kim, Seung-Hee;Moon, A-Ree
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.825-831
    • /
    • 2007
  • Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin ${\alpha}2$, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.