• Title/Summary/Keyword: MSTP

Search Result 4, Processing Time 0.021 seconds

Evolutionary Algorithms for Finding the k Most Vital Arcs in Minimum Spanning Tree Problem

  • Ho Yeon Chung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.21-30
    • /
    • 2001
  • The purpose of this study is to present methods for determining the k most vital arcs (k-MVAs) in the minimum spanning tree problem(MSTP) using evolutionary algorithms. The problem of finding the k-MVAs in MSTP is to find a set of k arcs whose simultaneous removal from the network causes the greatest increase in the total length of minimum spanning tree. Generally, the problem which determine the k-MVAs in MSTP has known as NP-hard. Therefore, in order to deal with the problem of real world the heuristic algorithms are needed. In this study we propose to three genetic algorithms as the heuristic methods for finding the k-MVAs in MSTP. The algorithms to be presented in this study are developed using the library of the evolutionary algorithm framework(EAF) and the performance of the algorithms are analyzed through the computer experiment.

  • PDF

Synthesis of 125I-labeled thiol-reactive prosthetic group for site-specific radiolabeling of human serum albumin

  • Shim, Ha Eun;Song, Lee;Jeon, Jongho
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • We demonstrate a detail protocol for the radiosynthesis of an $^{125}I$-labeled MSTP prosthetic group and its application to the efficient radiolabeling of human serum albumin (HSA). Radioiodination of the precursor (2) was carried out by using $[^{125}I]$NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified $^{125}I$-labeled MSTP ($[^{125}I]1$) was obtained with high radiochemical yield ($73{\pm}5%$, n = 3) and excellent radiochemical purity (>99%). Site-specific reaction between ($[^{125}I]1$) and HSA gave the $^{125}I$-labeled human serum albumin ($[^{125}I]3$) with more than 99% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly demonstrate that the present radiolabeling method will be useful for the efficient and convenient radiolabeling of thiol-bearing biomolecules.

Layer 2 Routing with Multi-Spanning Tree Per a Node (노드 당 다중 스패닝 트리를 이용한 2계층 라우팅)

  • Suh, Chang-Jin;Shin, Ji-Soo;Kim, Kyung-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.751-759
    • /
    • 2008
  • Carrier Ethernet backbone network integrates distributed layer-2 based metro networks. In this networks, Multiple Spanning Tree Protocol (MSTP) has been uscd as a main routing protocol that allows multiple spanning trees in a network. A better routing protocol called IEEE802.1aq - Shortest Path Bridging (SPB) is recently proposed, that generates the shortest spanning tree per a destination node. As SPB provides a routing path per a destination node, there is no way to adapt network traffic at normal condition. If we are free from the principle of "a spanning tree per a destination node", we can achieve adaptive routing. Based on this philosophy, we propose a new spanning tree based protocol - Edge Node Divided Spanning Tree (ENDIST). ENDIST divides an edge node into sub-nodes as many as connecting links from the node and each sub-node generates a single shortest path tree based on SPB. Depending on network or nodal status, ENDIST chooses a better routing path by flow-basis. This added traffic engineering ability contributes to enhanced throughput and reduced delay in backbone networks. The simulation informs us that ENDIST's throughput under heavy load performs about 3.4-5.8 and 1.5-2.0 times compared with STP's and SPB's one respectively. Also, we verified that ENDIST's throughput corresponds to the theoretical upper bound at half of cases we investigated. This means that the proposed ENDIST is a dramatically enhanced and the close-to-perfect spanning tree based routing schemes.

A Study on the Protection Switching Mechanism for Distribution Automation System Ethernet Networks Service of Distribution Automation System (배전자동화시스템 통신서비스를 위한 이중화 통신망 보호절체 알고리즘 연구)

  • Yu, Nam-Cheol;Kim, Jae-Dong;Oh, Chae-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.744-749
    • /
    • 2013
  • The protection switching technology is widely adopted in the fiber-optical transmission equipments based on TDM(Time Division Multiplexing), such as PDH, SDH/SONET. A variety of protection switching algorithms for Ethernet networks and the progress of standardization are summarized in the document. There are several kinds of protection switching algorithms for Ethernet networks, such as STP, RSTP, MSTP and etc. However, since Ethernet signal move through detour route, it causes much time to recover. Accordingly, it is difficult to secure a usability of Ethernet networks and QOS(Quality of Service). Also, if the protection switching protocol standardized by IEEE and ITU-T is used, it remains a inherent network switching time for protection. Therefore, a specific protection switching algorithm for Ethernet are needed for seamless and stable operation of Ethernet networks service for Distribution Automation System(DAS). A reliable protection algorithm with no switching delay time is very important to implement Self-healing service for DAS. This study of FPGA based protection switching algorithm for Ethernet networks shows that in case of faults occurrence on distribution power network, immediate fault isolation and restoration are conducted through interaction with distribution equipments using P2P(Peer to Peer) communication for protection coordination. It is concluded that FPGA based protection switching algorithm for Ethernet networks available 0ms switching time is crucial technology to secure reliability of DAS.