• Title/Summary/Keyword: MSS(Movable Scaffolding System)

Search Result 6, Processing Time 0.022 seconds

A Comparative Study of the Productivity through the Cost of the Precast Span Method(PSM) and Movable Scaffolding System(MSS) -By the Central Example of Company H on the Korea Train Express (KTX) (공사비 비교를 통한 Precast Span Method(PSM) 공법과 Movable Scaffolding System(MSS) 공법의 생산성 연구 -경부고속철도 H사의 사례를 중심으로)

  • Lee Tai Sik;Lee Sung Hyun;Kim Gil Hong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.535-540
    • /
    • 2001
  • In the early construction phase of the Korea Train Express (KTX), the Movable Scaffolding System (MSS) for the top structure of the bridge was the predominant construction method. But the method had to be changed due to arising problems and an alternative method had to be found. Company H that participated in Korea Train Express construction project achieved excellent results of performance through the introduction of the Precast Span Method (PSM), which has been previously successfully employed in foreign express train projects. This study intends to verify the superior performance of PSM over MSS in the KTX construction process by conducting a comparative analysis on PMS and MSS based on the field experience of company H. This study will not only help to understand PSM, which is expected to expand its future scope of application, but also contribute to solve the problems of PSM that occurred during the construction phase.

  • PDF

Numerical study of a new constructive sequence for movable scaffolding system (MSS) application

  • Teran, Jose Ramon Diaz de;Haach, Vladimir Guilherme;Turmo, Jose;Jorquera, Juan Jose
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.173-194
    • /
    • 2016
  • This paper consists in a study of a new contructive sequence of road viaducts with Movable Scaffolding System (MSS) using numerical tools based on finite element method (FEM). Traditional and new sequences are being used in Spain to build viaducts with MSS. The new sequence permits an easier construction of one span per week but implies some other issues related to the need of two prestressing stages per span. In order to improve the efficiency of the new sequence by reducing the number of prestressing stages per span, two solutions are suggested in this study. Results show that the best solution is to introduce the 100% of the prestressing force at the self-supporting core in order to improve the road viaduct construction with movable scaffolding system by reducing execution time without increasing economic costs.

Time Dependent Analysis Considering the Construction Sequences in Bridges of Movable Scaffolding System (MSS) (시공단계를 고려한 MSS 공법 교량의 시간의존적 거동해석)

  • Kwak Hyo-Gyoung;Son Je-Kuk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.167-174
    • /
    • 2005
  • Through time-dependent analyses of RC bridges constructed by a movable scaffolding system (MSS) considering the construction sequence and creep deformation of concrete, structural responses related to the member forces are reviewed. On the basis of the compatibility condition and equilibrium equation at every construction stage, basic equations that can describe the moment variation with time in movable scaffolding construction are derived. By using the introduced relations, the design moment and its variation over time can easily be obtained with only the elastic analysis results and without additional time-dependent analyses considering the construction sequences. In addition, the design moments determined by the introduced equations are compared with the results from a rigorous numerical analysis with the objective of establishing the relative efficiencies of the introduced equations.

  • PDF

Determination of Design Moments in Bridges Constructed by Movable Scaffolding System (MSS공법으로 시공되는 교량의 설계 모멘트 결정)

  • 곽효경;손제국
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.317-327
    • /
    • 2001
  • In this paper, a relation to calculate design moments for reinforced concrete(RC) bridges constructed by movable scaffolding system(MSS) is introduced. Through the time-dependent analysis of RC bridges considering the construction sequence, the structural responses related to the member forces and deflections are reviewed, and a governing equation for determination of the design moment, which includes the creep deformation, is derived on the basis of the displacement-force condition at every constructuion stage. By using the relation, the design moment and its variation over time can easily be obtained only with the elastic analysis results without additional time-dependent analysis. In addition, correlation studies with the results by rigorous numerical analyses are conducts to verify the applicability of the introduced relation, and a more reasonable guideline for the determination of design moments is proposed on the basis of the obtained moment envelop.

  • PDF

Development of an Activity-Based Conceptual Cost Estimating Model for P.S.CBox Girder Bridge (대표공종 기반의 P.S.C 박스 거더교 개략공사비 산정모델 개발 -상부공사 중심으로-)

  • Cho, Ji-Hoon;Kim, Sang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.197-201
    • /
    • 2008
  • Conceptual cost estimates for domestic highway projects have generally been conducted using governmental unit-price references. Inaccuracies in governmental unit-price data has repeatedly addressed in the Korean construction industry which often lead to poor decision making and cost management practices. Thus, needs for developing a better way of conceptual cost estimating has been widely recognized. This research is considered as the first step in developing such model using real-world cost data based on actual construction activities. The data analyzed in this paper includes 41 P.S.C (Prestressed Concrete) Box bridges which broke into 4 categories based on construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). Actual design documents; including actual cost estimating documents, drawings and specifications were carefully reviewed to effectively break down cost structures for PSC girder bridges. Among more than 40 cost categories for each P.S.C girder bridge type, 7 of them were identified which accounted for more than 95% of total construction cost (ILM: 99.47%, MSS: 99.22%, FSM: 98.18%, and FCM: 98.12%). In order to validate the clustering of cost categories, the variation of each cost category has been investigated which resulted in between -1.16 % and 0.59%.

  • PDF

Stress Distribution on Construction Joint of Prestressed Concrete bridge Members with Tendon Couplers (텐던커플러를 사용한 프리스트레스트 콘크리트 교량부재의 이음부 응력분포 특성)

  • 오병환;채성태;김병석;이만섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, prestressed concrete(PSC) bridge structures with many repetitive spans have been widely constructed using the segmental construction method in many countries. In these segmentally constructed PSC bridges, there exist many construction joints which is required coupling of tendons or overlapping of tendons to introduce continuous prestress through several spans of bridges. The purpose of this paper is to investigate in detail the complicated stress distributions around the tendon coupled joints in prestressed concrete girders. To this end, a comprehensive experimental program has been set up and a series of specimens have been tested to identify the effects of tendon coupling. The present study indicates that the longitudinal and transverse stress distributions of PSC girders with tendon couplers are quite different from those of PSC girders without tendon couplers. It is seen that the longitudinal compressive stresses introduced by prestressing are greatly reduced around coupled joints according to tendon coupling ratios. The large reduction of compressive stresses around the coupled joints may cause deleterious cracking problems in PSC girder bridges due to tensile stresses arising from live loads, shrinkage and temperature effects. The analysis results by finite element method correlate very well with test results observed complex strain distributions of tendon coupled members. It is expected that the results of this paper will provide a good basis for realistic design guideline around tendon coupled joints in PSC girder bridges.