• 제목/요약/키워드: MSCSS

검색결과 3건 처리시간 0.013초

Vibration control parameters investigation of the Mega-Sub Controlled Structure System (MSCSS)

  • Limazie, Toi;Zhang, Xun'an;Wang, Xianjie
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.225-237
    • /
    • 2013
  • Excessive vibrations induced by earthquake excitation and wind load are an obstacle in design and construction of tall and super tall buildings. An innovative vibration control structure system (Mega-Sub Controlled Structure System-MSCSS) was recently proposed to further improve humans comfort and their safeties during natural disasters. Preliminary investigations were performed using a two dimensional equivalent simplified model, composed by 3 mega-stories. In this paper, a more reasonable and realistic scaled model is design to investigate the dynamical characteristics and controlling performances of this structure when subjected to strong earthquake motion. The control parameters of the structure system, such as the modulated sub-structures disposition; the damping coefficient ratio (RC); the stiffness ratio (RD); the mass ratio of the mega-structure and sub-structure (RM) are investigated and their optimal values (matched values) are obtained. The MSCSS is also compared with the so-called Mega-Sub Structure (MSS) regarding their displacement and acceleration responses when subjected to the same load conditions. Through the nonlinear time history analysis, the effectiveness and the feasibility of the proposed mega-sub controlled structure system (MSCSS) is demonstrated in reducing the displacement and acceleration responses and also improving human comfort under earthquake loads.

Generic optimization, energy analysis, and seismic response study for MSCSS with rubber bearings

  • Fan, Buqiao;Zhang, Xun'an;Abdulhadi, Mustapha;Wang, Zhihao
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.347-359
    • /
    • 2020
  • The Mega-Sub Controlled Structure System (MSCSS), an innovative vibration passive control system for building structures, is improved by adding lead rubber bearings (LRBs) on top of the substructure. For the new system, a genetic algorithm is used to optimize the dynamic parameters and distributions of dampers and LRBs. The program uses various seismic performance indicators as optimization objectives, and corresponding results are compared. It is found that the optimization procedure for maximizing the energy dissipation ratio yields the best solutions, and optimized models have consistent seismic performances under different earthquakes. Seismic performances of optimized MSCSS models with and without LRBs, as well as the traditional Mega-Sub Structure model, are evaluated and compared under El Centro wave, Taft wave and 20 other artificial waves. In both elastic and plastic analysis, the model with LRBs shows significantly smaller story drift and horizontal acceleration than those of the other two models, and fewer plastic hinges are developed during severe earthquakes. Energy analysis also shows that LRBs installed in proper locations increase the deformation and energy dissipation of dampers, thereby significantly reduce the kinetic, potential, and hysteretic energy in the structure. However, LRBs do not have to be mounted on all the additional columns. It is also demonstrated that LRBs at unfavorable locations can decrease the energy dissipation for dampers. After LRBs are installed, the optimal damping coefficient and the optimal damping exponent of dampers are reduced to produce the best damping effect.

Low-Complexity Multi-size Cyclic-Shifter for QC-LDPC Codes

  • Kang, Hyeong-Ju;Yang, Byung-Do
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.319-325
    • /
    • 2017
  • The decoding process of a quasi-cyclic low-density parity check code requires a unique type of rotator. These rotators, called multi-size cyclic-shifters (MSCSs), rotate input data with various sizes, where the size is the amount of data to be rotated. This paper proposes a low-complexity MSCS structure for the case when the sizes have a nontrivial common divisor. By combining the strong points of two previous structures, the proposed structure achieves the smallest area. The experimental results show that the area reduction was more than 14.7% when the proposed structure was applied to IEEE 802.16e as an example.