• Title/Summary/Keyword: MSC (Mesenchymal stem cell)

Search Result 135, Processing Time 0.036 seconds

Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells

  • Shah, Sajita;Kang, Kyu-Tae
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.474-480
    • /
    • 2018
  • Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties. Here, we developed an in vitro 3-dimensional angiogenesis assay system using spheroids formed by two human vascular precursors: endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs). ECFCs, MSCs, or ECFCs+MSCs were cultured to form spheroids. Sprout formation from each spheroid was observed for 24 h by real-time cell recorder. Sprout number and length were higher in ECFC+MSC spheroids than ECFC-only spheroids. No sprouts were observed in MSC-only spheroids. Sprout formation by ECFC spheroids was increased by treatment with vascular endothelial growth factor (VEGF) or combination of VEGF and fibroblast growth factor-2 (FGF-2). Interestingly, there was no further increase in sprout formation by ECFC+MSC spheroids in response to VEGF or VEGF+FGF-2, suggesting that MSCs stimulate sprout formation by ECFCs. Immuno-fluorescent labeling technique revealed that MSCs surrounded ECFC-mediated sprout structures. We tested vatalanib, VEGF inhibitor, using ECFC and ECFC+MSC spheroids. Vatalanib significantly inhibited sprout formation in both spheroids. Of note, the $IC_{50}$ of vatalanib in ECFC+MSC spheroids at 24 h was $4.0{\pm}0.40{\mu}M$, which are more correlated with the data of previous animal studies when compared with ECFC spheroids ($0.2{\pm}0.03{\mu}M$). These results suggest that ECFC+MSC spheroids generate physiologically relevant sprout structures composed of two types of vascular cells, and will be an effective pre-clinical in vitro assay model to evaluate pro- or anti-angiogenic property.

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

  • Ok-Hyeon Kim;Tae Jin Jeon;Young In So;Yong Kyoo Shin;Hyun Jung Lee
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells

  • Shin, Jae Woo;Ryu, Seungwon;Ham, Jongho;Jung, Keehoon;Lee, Sangho;Chung, Doo Hyun;Kang, Hye-Ryun;Kim, Hye Young
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.580-590
    • /
    • 2021
  • Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.

Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion

  • Chao Li;Yuanjing Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.260-268
    • /
    • 2023
  • Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.

Impact of mesenchymal stem cell senescence on inflammaging

  • Lee, Byung-Chul;Yu, Kyung-Rok
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.65-73
    • /
    • 2020
  • Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.

Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs (돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구)

  • Lee, Ah-Young;Choe, Gyeong-Im;Nah, Jin-Ju;So, ByungJae;Lee, Kyung-Woo;Chang, Ki-Yoon;Song, Jae-Young;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells

  • Suh, Nayoung;Lee, Eun-bi
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.572-577
    • /
    • 2017
  • In most clinical applications, human mesenchymal stem cells (hMSCs) are expanded in large scale before their administration. Prolonged culture in vitro results in cellular senescence-associated phenotypes, including accumulation of reactive oxygen species (ROS) and decreased cell viabilities. Profiling of stem cell-related genes during in vitro expansion revealed that numerous canonical pathways were significantly changed. To determine the effect of selenocysteine (Sec), a rare amino acid found in several antioxidant enzymes, on the replicative senescence in hMSCs, we treated senescent hMSCs with Sec. Supplementation of Sec in the culture medium in late-passage hMSCs reduced ROS levels and improved the survival of hMSCs. In addition, a subset of key antioxidant genes and Sec-containing selenoproteins showed increased mRNA levels after Sec treatment. Furthermore, ROS metabolism and inflammation pathways were predicted to be downregulated. Taken together, our results suggest that Sec has antioxidant effects on the replicative senescence of hMSCs.

Safety and outcomes of subconjunctival allogenic mesenchymal stem cell transplantation in canine experimental corneal defects

  • Kim, Ju-Won;Lee, So-Young;Park, Hee-Myung
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.3
    • /
    • pp.157-162
    • /
    • 2012
  • Corneal injury is very common clinical condition in veterinary medicine and delayed or incomplete corneal healing has the potential of vision loss due to the loss of corneal transparency. For the reconstruction of corneal epithelium, tissue graft and cell transplantation have been prosperously investigated. The purpose of this study was to evaluate the clinical value and short-term safety of application of cultured allogenic mesenchymal stem cells (MSCs) in the treatment of canine experimental corneal defect. Corneal defects were surgically generated in the central corneas of healthy beagle dogs and cultured canine allogenic MSCs were transplanted via subconjunctival injection. Although mean healing time, the rate of epithelial regeneration, and the degree of corneal transparency were not significantly improved after MSC transplantation, significant immune reaction or incompatibility reaction was not detected except transient local irritation. These results propose the possibility of MSC application as a new regenerative medicine in canine ocular disorders.

Proteomic Analysis of the Hydrophobic Fraction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood

  • Jeong, Ju Ah;Lee, Yoon;Lee, Woobok;Jung, Sangwon;Lee, Dong-Seong;Jeong, Namcheol;Lee, Hyun Soo;Bae, Yongsoo;Jeon, Choon-Ju;Kim, Hoeon
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.

Isolation of Peripheral Blood-Derived Mesenchymal Stem Cells in Mares and Foals

  • Ye-Eun Oh;Eun-Bee Lee;Jong-Pil Seo
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.323-329
    • /
    • 2023
  • Peripheral blood-derived mesenchymal stem cells (PB-MSCs) have shown promise in cell-based therapy, as they can be harvested with ease through minimally invasive procedures. This study aimed to isolate PB-MSCs from foals and mares and to compare the proliferation and cellular characteristics of the PB-MSCs between the two groups. Six pairs of mares and their foals were used in this study. MSCs were isolated from PB by direct plating in a tissue culture medium, and cell proliferation (population doubling time [PDT], and colony-forming unit-fibroblast assay [CFU-F]), and characterization (morphology, plastic adhesiveness, colony formation, trilineage differentiation) were examined. There was no significant difference in the PB-MSC yield, CFU-F, and PDT between the mares and foals. PB-MSCs from both mares and foals showed typical MSC characteristics in terms of spindle-shaped morphology, plastic adhesive properties, formation of colonies, trilineage differentiation. These results suggest that PB-MSCs isolated from horses, both adult horses, and foals, can be used for equine cell-based therapy.