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Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe com-
plications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted 
to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been 
applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin 
endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce 
inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intra-
uterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles 
released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular ve-
hicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes 
the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular 
vesicles, explaining how these vesicles could provide new opportunities for MSCs.
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Introduction 

  Intrauterine adhesion, also known as Asherman syn-
drome, is characterized partial or complete obliteration of 
the uterine cavity by adherence of the uterine walls (1). 
Patients with IUA may present with a high rate of in-
fertility, recurrent miscarriage, abnormal menstruation 

and cyclic pain (2, 3). IUA can be induced by various risk 
factors including miscarriage curettage, postpartum cur-
ettage, gynecologic surgeries, and infection, among which 
miscarriage curettage was the dominating predisposing 
factor accounting for 66.7% (4, 5). However, the true prev-
alence of IUA is difficult to determine, as a large number 
of patients are asymptomatic (6).
  To date, hysteroscopic adhesiolysis has been considered 
as the first choice for the treatment of IUA patients. Other 
adjuvant therapies postoperative including hormones, in-
trauterine devices, hyaluronic acid gel and intrauterine 
balloons also have achieved certain effects (7-10). But in 
severe intrauterine adhesion, the pregnancy rate was still 
unsatisfactory due to the failure of functional endometrial 
regeneration was related to adverse pregnancy outcomes 
and high rate of recurrent adhesion (11). Therefore, it is 
crucial to find appropriate therapeutic strategies to over-
come existing problems.
  Over the last years, stem cell therapies have been ini-
tiated as a new attempt to repair and regenerate injured 
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tissues through their self-renewal, differentiation abilities 
and immunoregulatory capabilities. Among them, MSCs 
are particularly gaining attention due to their easy iso-
lation and wide sources. Recently, MSCs have been ex-
tensively used in preclinical animal models and already 
successfully used in several clinical applications for ther-
apy of IUA. However, the risks of iatrogenic tumor for-
mation, cellular rejection and infusional toxicity in MSC 
transplantation remain unresolved. Accumulating evi-
dences suggest that the therapeutic efficacy of MSCs ther-
apy may be mediated largely to their paracrine action by 
releasing EVs, rather than the engraftment of MSCs at the 
site of injury. Hence, using MSC-derived EVs as a cell-free 
therapy tool has become a promising alternative strategy 
for the treatment of IUA. In this review, we will discuss 
the formation of IUA, MSCs-EVs and the role of MSCs- 
EVs in the treatment of IUA.

The Formation of IUA

  Endometrium is a highly regenerative tissue that under-
goes cyclical phases of differentiation, proliferation and 
shedding under the control of fluctuations in circulating 
ovarian hormones (12). IUA is primarily caused by the de-
struction of the endometrium, which lead to the pro-
liferation of fibrous connective tissues and excessive depo-
sition of extracellular matrix. Endometrial fibrosis is con-
sidered as a crucial pathological characteristic of IUA, and 
it is regulated by a variety of cellular and molecular mech-
anisms throughout the process.
  Transforming growth factor-β (TGF-β) served as a key 
driver in endometrial fibrosis (13). The mechanism of the 
TGF-β1/Smad signaling pathway was associated with the 
activation of the myofibroblasts, overproduction of ex-
tracellular matrix (ECM) by inducing transcription of fi-
brotic factors such as α-SMA, collagen I, fibronectin and 
tissue inhibitor of matrix metal-loproteinases (TIMP) (14). 
Additionally, evidence has accumulated showing that the 
NF-κB, Hippo or Wnt signaling pathway could form a 
complex signaling network with TGF-β signaling pathway 
to mediate endometrial fibrosis (15-17). Moreover, Ai et al. 
(18) found that lncRNA TUG1 promotes endometrial fib-
rosis and inflammation by sponging miR-590-5p to regu-
late Fasl in intrauterine adhesions. Matrix metal-
loproteinase 9 (MMP9) is also considered to be an im-
portant protein for the degradation of ECM, which can be 
downregulated through the PI3K/AKT signaling pathway, 
leading to accumulation of ECM and proliferation of colla-
gen fibers on the damaged endometrium (19).
  Moreover, under pathological conditions, epithelial-mes-

enchymal transition (EMT) of endometrial epithelial cells 
(EECs) also connected to the development of endometrial 
fibrosis (20). To date, little was known about the molec-
ular mechanism in the pathogenesis of endometrial fibrosis. 
High mobility group AT-hook 2 (HMGA2) was regarded 
as an important regulator in EMT processes in some fi-
brotic diseases, such as pulmonary fibrosis, lens fibrosis 
and renal fibrosis. Similarly, in IUA patients and animal 
models, Song et al. (21) also observed the overexpression 
of HMGA2 directly mediated EMT. They further found 
that HMGA2 expression can be directly inhabited by 
let-7d to protect EEC from EMT. In addition, Circular 
RNAs also play an important role in the pathogenesis of 
endometrium fibrosis by inducing EMT. Studies demon-
strated that upregulation of circPTPN12 in EEC of fi-
brotic endometrium negatively correlated with the ex-
pression and activity of miR21-5p, which in turn lead to 
upregulation of DNp63a to promote the EMT (22). Guo 
et al. (23) further found endometrial stromal cells (ESCs) 
can be transdifferentiated into a myofibroblast phenotype 
through the TGF-β/Samd signal pathway, resulting in 
the failure of the endometrium to regenerate normally.
  Currently, various findings have identified the periodic 
regeneration of human endometrium is mediated to some 
extent by potential progenitors and stem cells located in 
the basal layer (24, 25). Once the basal layer of the endo-
metrium is severely damaged due to the iatrogenic trauma 
and infection, the deficiency and inactivity of stem cell 
will cause the endometrial repair disorders and lead to 
IUA. Min et al. (26) demonstrated that there are fewer en-
dometrial MSCs and the migration and invasion abilities 
of the MSCs decreased in the IUA patients, which in-
directly lead to the cell differentiation, angiogenic and im-
munosuppressive abilities of patients with IUA were sig-
nificantly decreased compared with those of healthy 
women. 

Characterization and the Paracrine Action of 
MSCs

  MSCs are multipotent stem cells that can be success-
fully isolated from a variety of adult tissues including the 
bone marrow, adipose tissue, umbilical cord blood, pla-
centa and dental pulp and even the spleen, liver, kidney, 
brain, lung, thymus, and pancreas (27-29). The International 
Society for Cellular therapy (ISCT) in 2005 has established 
standards for defining MSCs. First, MSCs must be plas-
tic-adherent in standard culture conditions. Second, MSCs 
must express CD105, CD73, and CD90 and lack ex-
pression of CD14, CD19, CD31, CD34, CD45, CD79 al-
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pha and human leukocyte antigen-DR (HLA-DR) surface 
markers. Third, MSCs must differentiate into adipocytes, 
osteocytes, and chondroblasts in vitro differentiating con-
ditions (30). 
  MSCs possess the capacity to differentiate into multiple 
cell types and undergo self-renewal (31). To date, MSCs 
have been intensively investigated as a cell-based therapy 
or in combination with biomaterial scaffolds in a tissue 
engineering approach to facilitate endometrial regeneration 
in clinical and animal studies. Researchers initially hy-
pothesized that the repair function of MSCs was directly 
attributable to migration and homing to the damaged site, 
subsequently differentiate into functional cells. However, 
studies gradually found that the transplanted cells neither 
differentiate into resident injured cells nor for survival 
long time enough to assist the tissue replacement process 
(32, 33). Paracrine secretion was first identified by Gnecchi 
and colleagues in 2006. They reported evident improve-
ment in ventricular function following injection of con-
ditioned medium collected from modified MSCs into rat 
models of myocardial infarction (34). Instead, the para-
crine effectors-EVs secreted by MSCs, contributes to the 
immunosuppressive, anti-apoptotic, anti-fibrotic, angio-
genic and anti-inflammatory effects via transferring in-
formation with damaged cells (35).

Challenges for Use of MSCs Therapy and the 
Advantages of MSC-EVs

  Transplanting MSCs was widely regarded as an ideal 
therapeutic strategy as much vivo and vitro research is be-
ing conducted regarding their use as a treatment for ute-
rine repair and regeneration. However, there are many 
concerning issue in MSC clinical applications, one of 
which is the safety of MSCs. Røsland et al. (36) have ob-
served spontaneous malignant transformation of MSCs in 
long term vitro culture, while opposite outcomes were stat-
ed by other investigators (36-38). In addition, due to the 
genomic and phenotypic instability of MSCs, it may serve 
as precursor cells for solid and hematological malignancies. 
And excess chemokines and growth factors produced by 
MSCs can directly act on receptors on the surface of can-
cer cells, thereby regulating tumor growth (39-42). Moreover, 
the therapeutic effect of MSCs was greatly weakened via 
intravenous injection, which was mainly owing to only a 
few MSCs access the target organ through the capillaries, 
and the rest will be blocked. Notably, a literature review 
of 844 procedures found one case of pulmonary embolism 
as possibly related to MSCs (43). Furthermore, hypoxic, 
inflammatory activated and low pH microenvironments at 

the damaged site lead to adverse conditions for stem cell 
survival, which further limits the effect of MSCs based 
therapy (32, 44). Besides, prior to clinical applications, 
MSC needs to be stored in an appropriate vehicle media 
to maintain cell viability. Unfortunately, it is considerably 
difficult to choose a standardized cell storage medium due 
to insufficient research (45). 
  Compared to the original MSCs, MSC-EVs would be 
safer for intravenous administration to patients and the 
risk of tumor formation would be much lower, as they are 
avoid of uncontrolled cell differentiation. Moreover, EVs 
are nano-sized particles, so there is no risk of embolism. 
Further, MSC-EVs are more stable to store and maintain 
bioactivity for a long time (46). Meanwhile, MSC-EVs do 
not carry cell surface major histocompatibility complex 
(MHCI and MHCII) proteins and thereby avoid the risk 
of immunological rejection. Therefore, MSC-EVs are go-
ing to be a novel and promising strategy for IUA.

Overview of Extracellular Vesicles

  Extracellular vesicles are commonly defined as a hetero-
geneous group of particles that released from cells and are 
enclosed by a lipid bilayer. It is widely known as an im-
portant mode of intercellular communication by exchang-
ing proteins, lipids and genetic material between cells in 
both physiological and pathological conditions (47).
  EVs can be classified into three types based on their 
mode of release and size: exosomes, microvesicles (MVs) 
and apoptotic bodies (48). In general, exosomes have a 
cup-shaped morphology with a size range between 30 and 
200 nm in diameter (49). The biogenesis of exosomes first-
ly involves the inward budding of the endosomal mem-
brane to form multivesicular bodies (MVBs), which fuse 
with the plasma membrane and release contents limited 
in vesicles into the extracellular space (50). 
  Microvesicles, unlike exosomes, are directly generated 
and released through budding and fission of the plasma 
membrane and range in size from 50 to 2,000 nm (48). 
Apoptotic bodies, tend to larger than exosomes and MVs, 
are between 1,000 nm∼6 μm in size (51). The formation 
of apoptotic bodies is a result of cell disassembly during 
programmed cell death. In the final stage of apoptosis, 
cells can divide into variable numbers of apoptotic bodies 
containing a wide variety of cellular components (52).
  During their formation, extracellular vesicles incorporate 
a specific subpopulation of bioactive molecules from their 
cell of origin, including proteins, nucleic acids and lipids, 
which can be delivered to target cells by fusion with plas-
ma membrane. As protein separation and detection tech-
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nology have developed, thousands of vesicular proteins are 
identified, such as heat shock proteins (HSP70 and 
HSP90), cytoskeletal proteins (actins, cofilin-1, ezrin/radi-
xin/moesin, profilin-1, and tubulins), tetraspanins (CD9, 
CD63, CD81 and CD82) and signal transduction–involved 
proteins and vesicle trafficking-related proteins (TSG101, 
ALIX, and RAB proteins,syntenin-1) etc (53, 54). Apart 
from proteins, the nucleic acids of NVs including mRNA, 
microRNA and DNA, also serve as important biomarkers 
and therapeutics for a variety of diseases (55-57). Additional-
ly, EVs are enriched with a variety of lipid compounds 
containing hosphatidylcholine, phosphatidylethanolamine, 
phosphatidylserine (PS), lysophosphatidic acid, ceramide, 
cholesterol and sphingomyelin, which can be specifically 
associated with different cell sources of EVs (56). 

Isolation and Characterization of MSC-EVs

  Research in the field of EVs has grown rapidly in the 
last few years, and there is a plethora of techniques for 
the isolation based on their size, density, and immunoaffi-
nity, among which ultracentrifugation remains the most 
widely used isolation method so far (58). This technique 
uses serial and differentiated centrifugation steps to sedi-
ment cells and large cellular debris, and finally ultra-
centrifugation at 100,000∼200,000×g to isolate EVs (59). 
However, it is not suitable for large-scale clinical applica-
tion due to its disadvantages such as long processing 
times, low EVs yield and limited purity. Density gradient 
ultracentrifugation can markedly reduce the contamina-
tion of EV isolates by adding iodixanol or sucrose of dif-
ferent densities to the sample before ultracentrifugation 
(60). It should be noted that the extra stages in EV purifi-
cation not only increase the purity of the target EV, but 
also further decrease their quantity. Beside, other alter-
native methods like size exclusion chromatography (SEC), 
ultrafiltration (UCF), and immuno-based capturing (IBC) 
and precipitation with reagents have been shown to isolate 
EVs with much lesser time and more efficiently than ul-
tracentrifugation (61). Currently, the combination of two 
or more isolation methods are increasingly being devel-
oped to achieve better throughput capacity of EV iso-
lation, for example, ultrafiltration combined with size ex-
clusion chromatography has been proven to preserve func-
tional characteristics, while mediating isolation of EVs at 
high yield (62, 63). 
  In order to precisely use EVs in medical and pharma-
ceutical fields, simple and direct methods are needed to 
determine their size and concentration in biological fluids. 
The most common technique is the Nanoparticle Tracking 

Analysis (NTA), which can tracks fluctuations of the light 
scattered of individual vesicles based on their Brownian 
motion using a light microscope (64, 65). By combining 
NTA with fluorescence measurement, the vesicles can be 
labeled with specific cell tracker conjugated quantum 
dots, allowing their phenotype to be determined (66). 
However, this method is only accurate detection EVs of 
size 30∼1,000 nm, similar sizes of contaminants could 
confound the results of EVs quantification and other sizes 
EVs may be lost in vain. Dynamic light scattering (DLS), 
similar to NAT, can detect NVs based on the Brownian 
motion, but it was inaccurate for polydisperse samples be-
cause the detection element collects scattered light from 
all particles at the same time (67). Scanning/Transmission 
electron microscopy (SEM/TEM) is a technique which 
widely used to display morphology and structure of EVs 
(68). An important consideration when using SEM/TEM 
is the sample preparation may induce changes the mor-
phology and cause damages to EVs. To overcome this ob-
stacles，cryo-EM is being applied for EV analysis under 
liquid nitrogen (69). Atomic force microscopy (AFM) 
technique includes its ability to measure samples in their 
native conditions with minimized sample preparation and 
obtain a real 3D image of surface topography recorded 
with very high resolution (70). To provide more compre-
hensive information about EV molecular characteristics, 
various techniques for protein-based and RNA-based mo-
lecular profiling of EVs have emerged over the years. 
Spectrophotometers, RiboGreen assay, qRT-PCR, Next-ge-
neration sequencing (NGS/RNA-seq), NanoString and mi-
croarrays can be effectively used for the quantification of 
nucleic acids (71). In addition, for protein, Western blot-
ting and enzyme-linked immunosorbent assay (ELISA) 
are conventional immunoaffinity-based techniques repre-
senting targeted methods. Other techniques, such as re-
agent-based bicinchoninic acid (BCA), Bradford (Coomassie 
dye) assays or fluorescent reagent-based fluorometric as-
says, microfluidic approaches and electrochemical de-
tection provides other promising mechanism for protein 
detection in EVs (70, 72). 

Extracellular Vesicles in IUA

  The potential of MSC-derived EV in IUA treatment has 
been extensively studied (Table 1). Zhang et al. (73) suc-
cessfully extracted EVs from human menstrual blood de-
rived stromal cells (MenSCs-sEVs) and verified that these 
EVs effectively and safely restored the impaired endome-
trium in the IUA rat model. Furthermore, treatment with 
MenSCs-sEVs increased BMP7 levels and activated the
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SMAD1/5/8 and ERK1/2 pathways in vivo, thereby allevi-
ating endometrial fibrosis via inhibiting TGFβ1/Smad3 
signaling pathway (73). Additionally, in Xiaos’ study, the 
injection of exosomes released from bone marrow mesen-
chymal stem cell (BMSC-EVs) into uterine cavity sub-
jected to mechanical damage can repress endometrial fi-
brotic gene (collagen1α1 and α-SMA) expression and 
modulate the endometrium recovery process by increased 
the microRNA-340 level in endometrial stromal cells (74). 
Similarly, Yao et al. (75) found that BMSC-EVs decreased 
the fibrotic area and even reversed EMT process induced 
by TGF-β1 signaling pathway. MiR-29a in BMSCs-EVs 
also has an anti-fibrotic role during the repair process 
(76). In IUA model, treatment with exosomes isolated 
from adipose derived stem cell promoted endometrial re-
generation, enhanced the expression of integrin-β3, LIF, 
VEGF and improved fertility (77). Moreover, lncRNA- 
MIAT in exosomes alleviated endometrial fibrosis by ad-
sorbing miR-150-5p which up-regulated the expression of 
TGFβR1 and a-SMA (78). IUA treatment with EV from 
MSCs derived umbilical cord also has shown a promising 
alternative therapy. It was demonstrated that a construct 
of exosomes and collagen scaffold induced endometrium 
regeneration, collagen remodeling and restored fertility by 
facilitated CD163+M2 macrophage polarization, reduced 
inflammation, and increased anti-inflammatory responses 
in vivo and in vitro (79). Another study further compared 
the therapeutic effects of estrogen alone, UCMSCs-EVs 
alone and UCMSCs-EVs combined with estrogen on IUA 
model. They observed that the combined treatment group 
had the best therapeutic effect on promoting the re-
generation of damaged endometrium and re-establishing 
endometrial function. Meanwhile, gene expression of in-
flammatory cytokines (IL-1, IL-6, and TNF-α) was sig-
nificantly downregulated in combined treatment group 
(80). In addition, Saribas et al. (81) has investigated the 
effects of MSC- EVs on angiogenesis, which is essential 
for the physiological process of endometrium regeneration. 
They have shown that the expression of the angiogenic 
marker CD31 is markedly increased in the MSC-EVs 
group. 
  Taken together, at least three key functions are involved 
in the repair of damaged endometrium. Firstly, one of the 
therapeutic functionalities of MSC-derived EVs is anti-in-
flammatory efficacy. Some cytokines, chemokines and che-
mokine receptors contained in MSC-EV, limiting in-
flammation to prevent excessive tissue destruction. Secondly, 
on hypoxia stimulation, MSC-EVs activate the expression 
of genes related growth of blood vessels. Angiogenesis is 
a fundamental process for the delivery of oxygen, nu-

trients, and growth factors for the healing of damaged tis-
sues (82). Thirdly, the release of MSC-EVs allows cells to 
communicate with other adjacent or distant cells by trans-
ferring RNAs into recipient cells via endocytosis and/or 
fusion. A variety of EV-encapsulated RNAs can regulate 
the expression of multiple target genes and participate in 
various cell signaling processes to modulate the fibroblast 
biology inhibiting excessive fibrosis (30, 83). 

Conclusions

  Although MSC-derived EVs application as a cell-free 
method can be a promising alternative to stem cell ther-
apy, various challenges arise to be dealt with before clin-
ical application. Given MSC-EVs have vast heterogeneity 
in size, composition, and origin, it is urgent to establish 
a standardized protocol for the isolation and purification 
of MSC-EVs. However, the technologies for the purifica-
tion and isolation of EVs are still in their infancy due to 
insufficient specificity to distinguish EVs and the density 
or size of the lipoproteins contaminations can be very 
close to that of EVs, making it difficult to separate com-
pletely (84). The frequency of administration and dosage 
of MSC-EVs are still inconclusive, and continued in depth 
preclinical in vivo models is required. Furthermore, most 
of the traditional laboratory-scale methods used for EV 
isolation employ complex steps of isolation and are low 
throughput, which poses challenges for scaling up the 
processing to large volumes. In addition, currently, we 
know little about the complex molecular mechanisms of 
EVs in disease, the unknown negative effects of MSC-EVs 
have to be clarified. Therefore, further research is needed 
to clearly apply MSC-EVs. In conclusion, MSCs-EVs play 
a significant role in treatment of IUA. Although chal-
lenges and difficulties still remain, MSC-EVs are very 
promising for future clinical use and MSC-EVs-based may 
be an alternative to MSC-based treatments. However, 
more detailed investigation should be carried out before 
clinical application in the future. 
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