• Title/Summary/Keyword: MS-VAR

Search Result 143, Processing Time 0.025 seconds

Myo-inositol increases the plating efficiency of protoplast derived from cotyledon of cabbage (Brassica oleracea var. capitata)

  • Jie, Eun-Yee;Kim, Suk-Weon;Jang, Hye-Rim;In, Dong-Su;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • This study describes the effect of myo-inositol on sustained cell division and plant regeneration from cotyledon-derived protoplast of cabbage (Brassica oleracea var. capitata). Freshly isolated protoplasts were cultured in modified Murashige and Skoog (MS) medium removed ammonia ions and containing $0.4\;mg\;l^{-1}$ thiamine HCl, $100\;mg\;l^{-1}$ myo-inositol, $2\;mgl^{-1}$ 2,4-D, $0.5\;mgl^{-1}$ BA, $30\;gl^{-1}$ sucrose and several concentrations of myo-inositol (2, 4, 6, 8, 10% (w/v)) as an osmotic stabilizer. After 3 weeks of culture in the dark at $25^{\circ}C$, the plating efficiency of cabbage protoplasts reached to $22.5{\pm}2.9%$ when cultured in modified MS medium supplemented with $2\;mgl^{-1}$ 2,4-D, $0.5\;mgl^{-1}$ BA, $30\;gl^{-1}$ sucrose and 8% (w/v) of myo-inositol at a density of $2{\times}10^5$ protoplasts/ml. Rapidly growing cell colonies after 3 weeks of culture were transferred to the same culture medium removed osmoticum. To induce shoot regeneration from calluses, calluses with about 2 mm in diameter were transferred to the MS medium containing $2\;mgl^{-1}$ BA and $0.5\;mgl^{-1}$ NAA. After further three weeks of incubation onto the medium in the light, green shoots were formed on the surface of calluses at a frequency of 30%. Upon transfer to half-strength MS basal medium, roots were formed onto the bottom of regenerated shoots without auxin treatments. These regenerated plantlets were successfully acclimatized to soil transfer, grown to normal mature plants. The cabbage protoplast culture system established in this study could be applied for production of somatic hybrids or cybrids by asymmetric protoplast fusion and mass proliferation of elite somatic clones of cabbage.

Investigation of floral Structure and Plant Regeneration through Anther Culture in Ginger (생강의 화기구조 조사 및 약배양에 의한 식물체 재생)

  • 김태수;최인록;김현순;김수동;박문수;고정애
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.207-210
    • /
    • 2000
  • We investigated the structure of floral organs and possibility of seed-set to breed a variety in ginger Zingiber officinale Rosc. Floral bud was formed from collected domestic Seosan var, and foregin Thailand var, the number of florets per bud were 8 and 10 in Seosan and Thailand var, respectively, Flowering time ranged from 18 to 25 August irregularly at 4-5 pm. The flower has the long styled with fiber hairs on top of stigma and connected-two anthers. Pollens were mixed of circular and ellips shape and its extine was two layer structure. Callus formation from anther explants was effective with compact and embryogenic on N$_{6}$ medium supplemented 2 mg/l of NAA(NCM). Plant regeneration was on the MS medium with BA of 1-2 mg/l from 40 days old callus after transferred callus medium.m.

  • PDF

Somatic Embryogenesis and Plant Regeneration in Leaf Explant Cultures of Gentiana scabra var buergeri (용담(Gentina scabra var. buergeri)의 잎 절편 배양에서 체세포배발생에 의한 식물체 재분화)

  • 방재욱;이미경;정성현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.233-237
    • /
    • 1994
  • Plant regeneration system via somatic embryogenesis in leaf explant cultures of Gentiana scabra var. buergeri has been established. Leaf segments formed calli when cultured on MS medium supplemented with 0.5 mg/L 2,4-D and 2 mg/L BAP After transferred to SH medium supplemented with 0.5 mg/L 2,4-D, 2 mg/L CPA and 0.5 mg/L kinetin, the callus became embryogenic. The embryogenic callus was subcultured every 3 to 4 weeks. Upon transfer onto SH basal medium the embryogenic callus gave rise to numerous somatic embryos, which subsequently developed into plantlets. The regenerated plants were potted in an artificial soil with mixture (peatmoss : pearlite : vermiculite : 2 : 1 : 1) and transplanted to the soil after kept under a high humidity for two weeks. A total of 78 plants out of 105 regenerated plants survived in the soil. Phenotypic variations in height, number of stems and the flowering time were observed in tile regenerated plants. Cytogenetical analyses showed no chromosomal variation.

  • PDF

Isolation and Identification of Sterol Compounds from the Red Kohlrabi (Brassica oleracea var. gongylodes) Sprouts (적콜라비 (Brassica oleracea var. gongylodes) 새싹으로부터 sterol 화합물의 분리 및 동정)

  • Lee, Jae-Woong;Lee, Dae-Young;Cho, Jin-Gyeong;Baek, Nam-In;Lee, Youn-Hyung
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.207-211
    • /
    • 2010
  • The sprouts of Brassica oleracea var. gongylodes were extracted with 100% MeOH and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc fraction, three sterols were isolated through the repeated silica gel and ODS column chromatographies. On the basis of physico-chemical and spectroscopic data including NMR, MS, and IR, the chemical structures of the sterols were determined as ${\beta}$-sitosterol (1), brassicasterol (2), and 7-ketobrassicasterol (3). Compound 1 is usually observed in plant. Compounds 2 is observed in Brassica sp., and compounds 3 have very rarely occurred in natural source including plant.

Plant Regeneration from Leaf Segments Culture of Several Jeju Native Lilies (잎절편 배양에 의한 제주 자생나리의 재분화)

  • Kim Jeong-Seon;Song Seung-Woon;Kim Yong Chol;Kim Kwang-Ho;Park Young-Chul
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.450-455
    • /
    • 2005
  • This study was conducted to examine the effects of plant growth regulators on the plant regeneration from leaf segments of Lilium callosum, L. concolor var. partheneion, and L. formosanum. Leaf segments were sectioned about 5 mm long and cultured on the basal medium (MS medium with $3\%$ sucrose and $0.8\%$ agar) under dark condition, The most effective plant regulators on harvesting more shoots from leaf culture of L. callosum were $0.2\;mg{\cdot}L^{-1}\;BA$ and $0.5\;mg{\cdot}L^{-1}\;NAA$. Culturing in the basal medium with $0.2\;mg{\cdot}L^{-1}\;BA$ and $2.0\;mg{\cdot}L^{-1}\;NAA$ was effective for leaf culture of L. concolor var. partheneion. The treatment of $1.0\;mg{\cdot}L^{-1}\;BA$ and $1.0\;mg{\cdot}L^{-1}\;NAA$ was the most effective condition for shoot harvest at the leaf culture of L. formosanum.

Analysis of Volatile Compounds in Perilla frutescens var. acuta by Solid Phase Microextraction (SPME에 의한 소엽의 향기성분 분석)

  • Chung, Mi-Sook;Lee, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • This study was conducted to find the appropriate fiber for extraction of volatile compounds from Perilla frutescens var. acuta. by solid phase microextraction (SPME). Two SPME fiber, carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane (PDMS) were used to determine the selectivity of the fibers to the different flavor compounds present in the Perilla frutescens var. acuta. Thirty-nine compounds were identified in the volatile compounds extracted by CAR/PDMS fiber, including 6 aldehyde, 1 alcohol, 10 hydrocarbons, 17 terpene hydrocarbons, 2 ketones and 3 benzenes. In PDMS fiber, 3 aldehydes, 2 alcohols, 13 terpene hydrocarbons and 2 miscellaneouses were identified. Perillaldehyde was found to be major volatile flavor component of fresh Perilla frutescens var. acuta. Perillaldehyde and terpene hydrocarbons were more identified in PDMS fiber. These results suggested that the selectivity of PDMS fiber was better than that of CAR/PDMS fiber in Perilla frutescens var. acuta..

Chemical Composition of the Essential Oils from Ligularia fischeri and Ligularia fischeri var. spiciformis (곰취와 한대리곰취 정유의 화학적 성분)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.4
    • /
    • pp.284-293
    • /
    • 2019
  • This study investigated the volatile flavor composition of essential oils from Ligularia fischeri and Ligularia fischeri var. spiciformis. The essential oils obtained from the plants were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). 99.63% volatile flavor compounds were identified in the essential oil from the L. fischeri. The major compounds were (E)-3-hexenol (30.73%), longiverbenone (13.23%), viridiflorol (12.39%), ${\gamma}$-muurolene (7.32%), limonene (6.12%), and caryophyllene (${\beta}-4.24%$). 99.76% volatile flavor compounds were identified in the essential oil from the L. fischeri var. spiciformis. The major compounds were ledol (42.81%), (E)-15-heptadecenoic acid (33.91%), ${\beta}$-bisabolol (3.23%), viridiflorol (3.08%), and cis-${\alpha}$-farnesene (2.60%). Although the two plants are very similar, the chemical composition of the essential oils was significantly different in quality and quantity. In the case of L. fischeri., it has high contents of monoterpene and sesquiterpene. (E)-3-hexenol, longiverbenone, ${\alpha}$-phellandrene, and ${\alpha}$-myrcene were regarded as the characteristic odorants of L. fischeri, but they were not identified in L. fischeri var. spiciformis. Ledo, (E)-15-heptadecenoic acid, and ${\beta}$-bisabolol were regarded as the characteristic odorants of L. fischeri var. spiciformis, but they were not identified in L. fischeri. The ratio of limonene, ${\gamma}$-muurolene and viridiflorol can be used as an indicator to distinguish between these two plants.

Plant Regeneration from Hypocotyl-Derived Protoplasts of Brassica oleracea var. capitata (양배추 배축 원형질체로부터 식물체 재분화)

  • 이연희;조현석;서석철;김호일
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 1995
  • Protoplasts were isolated from hypocotyl tissues of 5-day-old Brassica oleracea var capitata Green Challenger seedlings. Several media were used for protoplast culture and shoot regeneration. The shoot-regeneration rapacity of protoplast derived callus depended on the initial culture medium. Protoplasts were cultured in liquid medium (B5 medium supplemented with CaCl2, 2H2O 600mg/L, g1ucose 20g/L, D-mannito1 70g/L, NAA lmg/L, BA lmg/L, 2.4-D 0.25 mg/L)at 27$^{\circ}C$ under the dark After 5 to 10 days, cultlues were diluted with medium with a reduced osmotic stabilizer and then transferred to illuminated conditions. The culture medium was changed with the fresh medium at 7- to 10-day-intervals until the formation of microcallus. Hypocotyl protoplast-derived callus proliferated when transferred to MS medium supplemented with NAA lmg/L, BA 1mg/L and GA$_3$ 0.02mg/L. Upon transfer to MS basal medium without growth regulators, roots were produced. In an attempt to increase the regeneration frequency, 10g/L polyvinylpyrrolidone was added to the regeneration medium, but the shoot regeneration was mot improved. The regenerated whole plants were acclimated in a sterized soilless mixture(vermiculite 2;perlite 2;peat moss1) in a culture room.

  • PDF

A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data (EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구)

  • Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.57-67
    • /
    • 2024
  • This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.

Herbicide Resistance in Plant Tissue Culture (식물체(植物體) 조직배양(組織培養)과 제초제(除草劑) 저항성(抵抗性))

  • Kim, Kil-Ung
    • Korean Journal of Weed Science
    • /
    • v.5 no.1
    • /
    • pp.9-13
    • /
    • 1985
  • This study was conducted to evaluate herbicide resistant plant through tissue culture. Callus was induced from embryos of Echinochloa crusgalli Beauv. (var, oryzicola Ohwi, var. caudata Kitagawa and var, crusgalli). An optium medium for callus induction and succinate dehydrogenase activity in inducted callus were detected and callus growth of various varieties of Echinochloa crusgalli was assessed under the treatment of various rates of butachlor[N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide]. MS medium seemed to be the most appropriate to induce callus from the embryos of varieties of E. crusgalli by using 2,4-D about 5.5mg/l as a hormone source. The activity of succinate dehydrogenase in inducted callus showed positive reaction against to TTC(2,3,5-triphenyltetrazolium chloride) regardless of concentrations of butachlor and varieties of E. crusgalli, indicating that all the callus induced were alive. The callus growths derived from seeds of E, cnesgalli were greatly affected by various rates of butachlor and were completely inhibited at the highest concentration of butachlor, $10^{-3}M$, regardless of varieties of E. crasgalli. $10^{-6}M$ of butachlor inhibited 24.6% of the callus growth of E. crusgalli Beauv, var. oryzicola Ohwi, while E. crusgalli Beauv. var. crusgalli showed 42% of inhibition, showing that there was difference in response of varieties of E. crusgalli Beauv. to butachlor.

  • PDF