• 제목/요약/키워드: MRI Images

검색결과 924건 처리시간 0.036초

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

전산화 치료계획의 CT/MRI 영상 융합 시 PLANNING MRI영상 획득의 유용성 평가 (USABILITY EVALUATION OF PLANNING MRI ACQUISITION WHEN CT/MRI FUSION OF COMPUTERIZED TREATMENT PLAN)

  • 박도근;최병기;김진만;이동훈;송기원;박영환
    • 대한방사선치료학회지
    • /
    • 제26권1호
    • /
    • pp.127-135
    • /
    • 2014
  • 목 적 : 전립선 암의 방사선 치료 시 컴퓨터 단층촬영 영상만을 이용하여 타겟 및 정상장기의 체적을 정의하기에는 제약성이 따른다. 이러한 제약성을 보완해주기 위하여 연부조직 대조도가 우수한 자기공명영상 장치가 사용되고 있다. 그러나 부정확한 CT/MRI 영상의 융합은 정확한 타겟 설정에 불확실성이 따르게 되며 정상장기의 불필요한 선량이 입사되어 부작용을 초래 할 수 있다. 이러한 불확실성을 줄이기 위해 본원에서는 CT/MRI영상 융합 시 모의 치료 과정과 동일한 고정용구와 자세로 환자를 셋업하여 MRI(Planning MRI)영상을 획득하고 있으며, 본 연구에서는 진단용 MRI영상과 Planning MRI영상을 비교 분석하여 Planning MRI의 유용성을 평가하고자 한다. 대상 및 방법 : 본원에서 2011년 8월부터 2013년 7월까지 전립선 암으로 진단을 받고 Non-hormone, Definitive RT 70 Gy/28 fx을 처방받은 10명의 환자를 대상으로 하였다. 모의 치료 후 30분 뒤에 MRI영상을 획득하였으며, 획득 된 CT/MRI영상은 뼈를 중심으로 Philips pinnacle v9.2를 이용하여 융합하였다. 전립선 Balloon tube의 유무에 따른 전립선의 변화를 측정하기 위하여 Planning MRI, 진단용 MRI영상에서의 전립선 체적을 측정 비교하였으며, 각각의 영상에서 전립선의 모양의 변화를 측정하기 위해 전립선의 중심에서 상하, 앞뒤, 좌우방향에서의 직경을 측정 비교하였다. 결 과 : Planning MRI, 진단용 MRI영상에서의 전립선 체적을 비교한 결과 각각 평균 $25.01cm^3$(범위 $15.84-34.75cm^3$), $25.05cm^3$(범위 $15.28-35.88cm^3$)의 결과를 얻었다. Planning MRI 대비 진단용 MRI는 0.12 % 증가로 그 차이는 크지 않다는 것을 알 수가 있었다. 하지만 Planning MRI를 기준으로 Transition zone 방향으로 총 $7.46cm^3$(29 %) 체적의 증가가 있었으며, Peripheral zone 방향으로 $8.52cm^3$(34 %)의 체적 감소가 있었다. 전립선 중심의 2차원 영상에서의 상하, 앞뒤, 좌우방향의 직경을 측정한 결과 Planning MRI에서 평균 3.82cm, 2.38cm, 4.59cm의 값을 나타냈으며, 진단용 MRI에서는 평균 3.37cm, 2.76cm, 4.51cm의 값을 알 수 있었다. Planning MRI 기준으로 앞뒤 방향으로 0.38cm(13 %)감소하였으나 좌우 방향 0.08cm(1.6 %), 상하방향 0.45cm(13 %)가 증가되었다. 결 론 : 본 연구의 결과를 바탕으로 Planning MRI와 진단용 MRI에서의 전립선의 총 체적은 큰 차이를 보이지 않았지만 직장에 전립선 Balloon tube 삽입으로 인한 전립선의 모양 및 부분 체적의 변화를 알 수가 있었다. 따라서 CT/MRI 영상 융합 시 Planning MRI영상을 이용한다면 진단용 MRI영상과 비교하여 Transition zone에 증가하는 체적만큼 손실 없이 타겟을 CTV에 포함시킬 수 있으며, Balloon으로 인한 Peripheral zone 체적의 감소를 더 명확히 구분하여 직장에 전달되는 방사선량을 줄일 수 있을 것이다. 이에 본 저자는 전산화 치료 계획에서의 CT/MRI영상 융합 시 모의 치료 과정과 동일한 고정용구와 자세를 재현하여 MRI영상을 획득하는 것이 유용할 것이라 사료된다.

인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화 (Comparison of SUV for PET/MRI and PET/CT)

  • 김재일;전재환;김인수;이홍재;김진의
    • 핵의학기술
    • /
    • 제17권2호
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

척추 MRI 검사 시 척추 유합술로 인한 금속 인공물 억제 방법에 대한 고찰 (Consideration on Methods to Suppress Metal Artifacts Caused by Spinal Fusion during Spine MRI Study)

  • 유세종;권순용;김성호
    • 한국방사선학회논문지
    • /
    • 제17권7호
    • /
    • pp.1123-1131
    • /
    • 2023
  • 본 연구는 척추 MRI 검사 시 척추 유합술로 인한 금속 인공물을 효과적으로 억제하는 방법을 제시하고자 하였다. 이를 위해 척추 수술용 나사로 제작된 팬텀을 제작하여 금속 인공물을 재현하였다. 그리고 1.5T 그리고 3.0T MRI 장치로 영상을 획득하여 자기장 세기에 따른 금속 인공물의 변화를 평가하였다. 더불어 수신대역폭을 200, 400, 800 Hz/PX로 증가시키며 금속 인공물을 평가하였다. 그 결과 1.5T MRI 장치에서 획득한 영상에서 발생한 금속 인공물은 3.0T MRI 장치에서 획득한 영상과 비교하여 약 52.2% 감소하여 유의한 차이를 보였다(p<0.05). 특히, 신호 감쇄 및 신호 누적 영역이 각각 약 52.81%, 42.71% 감소하여 금속 인공물 억제에 큰 효과가 있었다. 반면, 수신대역폭을 200에서 800 Hz/PX까지 증가시키며 영상을 획득한 경우는 1.5T MRI 장치의 경우 최대 8.93%, 3.0T MRI 장치의 경우 최대 10.98% 감소하여 유의미한 효과가 없었다(p>0.05). 본 연구의 결과, 수신대역폭의 증가는 신호 감쇄를 줄여 일부 금속 인공물을 줄였지만 신호 누적을 억제하지 못해 큰 효과가 없었다. 하지만 3.0T에서 1.5T로 자기장의 세기를 줄인 경우, 신호 감쇄와 신호 누적이 크게 감소해 금속 인공물을 효과적으로 개선할 수 있었다. 따라서 척추 유합술로 인한 금속 인공물을 억제하기 위해서는 저 자기장 MRI 장치에서 검사하는 것이 가장 효과적인 방법이라고 할 수 있다.

CT와 MRI 영상을 이용한 간담도계 간접볼륨렌더링 (Indirect Volume Rendering of Hepatobiliary System from CT and MRI Images)

  • 진계환;이태수
    • 한국방사선학회논문지
    • /
    • 제1권2호
    • /
    • pp.23-30
    • /
    • 2007
  • 본 논문에서는 CT(Computed Tomography)와 MRI(Magnetic Resonance Imaging)을 이용하여 획득한 2차원의 복부영상을 영역분할, 문턱치법 등의 전처리과정을 거쳐 3차원영상을 생성하는 방법을 제시함으로써 가상내시경(Virtual Endoscopy)에 응용하고자 한다. 3차원영상 가시화 방법으로는 개인용 컴퓨터에서 이용되는 범용의 그래픽가속기를 이용하여 빠른 속도로 렌더링을 할 수 있는 장점을 가지는 표면볼륨기법을 이용하였다. 여기에 이용한 알고리즘은 계산량이적은 Marching Cubes 이다. 그리고 워크스테션이나 전용의 프로그램이 없더라도 웹 브라우저 상에서 실행되는 가상현실모델링언어(VRML, Virtual Reality Modeling Language)양식의 3차원 영상을 생성하는 방법을 제시한다. CT의 3차원 영상 파일의 노드 수와 삼각형 수 및 크기는 각각 85,367, 174,150, 10,124이었고, MRI의 3차원 영상 파일의 노드 수와 삼각형 수 및 크기는 각각 34,029, 67,824, 3,804이었다.

  • PDF

Look Up Table을 이용한 자기공명영상 기반 방사선 치료계획의 타당성 분석 연구 (The Feasibility Study of MRI-based Radiotherapy Treatment Planning Using Look Up Table)

  • 김신욱;신헌주;이영규;서재혁;이기웅;박형욱;이재춘;김애란;김지나;김명호;계철승;장홍석;강영남
    • 한국의학물리학회지:의학물리
    • /
    • 제24권4호
    • /
    • pp.237-242
    • /
    • 2013
  • 뇌병변 등의 방사선 치료에 있어 CT (Computed Tomography) 영상만을 이용한 종양 체적(Tumor volume) 윤곽의 정확한 설정은 CT 영상의 부족한 연부조직 대조도 특성에 의하여 한계를 가진다. 따라서 자기공명영상(Magnetic Resonance Images, MRI)이 보다 정확한 목표 체적의 윤곽을 그려내기 위해 광범위 하게 사용되고 있다. 치료계획을 위해 획득한 자기공명영상에 진단단계에서 얻어진 CT영상의 전자밀도를 융합하는 방법과 자기공명 영상으로부터 만들어진 가상의 CT를 이용하는 방법 등이 자기공명 영상장치를 기반으로 한 방사선 치료 계획의 선량계산을 위하여 소개되어 왔다. 본 연구는 MRI기반의 선량계산의 가능성을 확인 해보기 위해 15명 환자의 진단 MR 영상을 통하여 Look Up Table (LUT)을 만들어 MRI 기반 선량계산과 기존의 CT 기반 선량계산을 비교 검증 하였다. 여기서 lMRI는 획득한 MR 영상에 LUT를 이용한 전자밀도 보정을 한 것이며 wMRI는 획득한 MR영상을 물 밀도로 동일화 시킨 것이다. 6 MV anterial 방향의 조사가 CT, lMRI, wMRI에 적용되어 치료계획으로 비교되었으며 또한 환자의 병변위치에 따라 2문 조사에서 5문 조사의 치료계획이 비교되었다. CT기반 치료계획을 기준으로 하여 등선량 분포와 DVH의 차이는 wMRI 보다 lMRI에서 더 적었으며 최대선량 차이가 91 cGy vs. 57 cGy, 평균선량이 74 cGy vs. 42 cGy, 최소선량 차이가 94 cGy vs. 53 cGy로 측정되어 각각의 선량 평가 면에서 그 차이가 wMRI보다 lMRI에서 더 적었다. 이러한 결과는 wMRI의 경우 공동내 선량계산에서 CT기반 선량계산과 차이가 나기 때문이다. 따라서 본 연구의 결과는 lMRI 기반 선량계산의 가능성이 있음을 보여준다.

임상용 3T MRI를 이용한 마우스 뇌의 영상 (Imaging Studies in Mouse Brain Using Clinical 3T MRI Scanner)

  • 임수미;박은미
    • 한국의학물리학회지:의학물리
    • /
    • 제21권4호
    • /
    • pp.348-353
    • /
    • 2010
  • 임상적용 전 단계에서 마우스와 같은 작은 설치류를 이용한 신경학적 실험의 필요성이 높아지면서 임상용 3T MRI를 이용한 마우스 뇌 영상의 요구가 높아지고 있다. 본 연구에서는 임상용 3T MRI를 이용한 마우스 뇌 영상의 가능성과 기술적인 적용과 최적화에 대해 알아보고자 하였다. 20~25g 체중 마우스 3마리에서 임상용 3T MRI를 이용하여 T1 강조영상(T1WI), T2 강조영상(T2WI), FLAIR (Fluid Attenuated Inversion Recovery) 영상, 가돌리늄 조영 T1 강조영상(Gd-T1WI), 확산 강조영상(DWI)을 시행하였다. 대상이 되었던 마우스 1마리는 뇌 경색을 유발시키지 않았으며 2마리는 우측 중대뇌동맥을 결찰하여 일측 뇌경색을 유발하고 1시간, 24시간, 72시간에 각각의 MRI 영상을 시행하였으며 각 영상에서 마우스 뇌의 striatum, 뇌실, 대뇌 피질의 해부학적 구별, 뇌 경색 부위의 진단 가능성 등을 분석하였다. T2WI에서 마우스 뇌의 striatum, 뇌실, 대뇌 피질의 해부학적 구별이 모두 가능하였고 T1WI, FLAIR, DWI 영상에서는 위의 해부학적 경계부위의 해상도는 감소하였다. 뇌경색 부위는 경색 후 1시간, 24시간, 72시간 영상 모두에서 발견되었고 T2WI, FLAIR에서는 24시간, 72시간에서만 구분되었다. 임상용 3T MRI를 이용한 마우스 뇌 영상에서 해부학적 부위의 구별이 가능하였고 특히 DWI를 이용하여 급성기 뇌 경색의 진단이 가능하였다. 앞으로 기술적인 적용과 최적화를 위한 노력이 계속 진행된다면 임상 실험에 큰 도움을 줄 수 있을 것이라 생각된다.

Three Dimensional Segmentation in PCNN

  • Nishi, Naoya;Tanaka, Masaru;Kurita, Takio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.802-805
    • /
    • 2002
  • In the three-dimensional domain image expressed with two-dimensional slice images, such as fMRI images and multi-slice CT images, we propose the three-dimensional domain automatic segmentation for the purpose of extracting region. In this paper, we segmented each domain from the fMRI images of the head of people and monkey. We used the neural network "Pulse-Coupled Neural Network" which is one of the models of visual cortex of the brain based on the knowledge from neurophysiology as the technique. By using this technique, we can segment the region without any learning. Then, we reported the result of division of each domain and extraction to the fMRI slice images of human's head using "three-dimensional Pulse-Coupled Neural Network" which is arranged and created the neuron in the shape of a three-dimensional lattice.

  • PDF

가도세틱산-조영증강 MRI에서 간세포암 피막 발견에 대한 영상차감기법의 진단적 가치 (Value of Image Subtraction for the Identification of Hepatocellular Carcinoma Capsule on Gadoxetic Acid-Enhanced MRI)

  • 김현중;안지현;문진실;차승환
    • 대한영상의학회지
    • /
    • 제79권6호
    • /
    • pp.340-347
    • /
    • 2018
  • 목적: 가도세틱산-조영증강 MRI에서 간세포암 피막 발견에 대한 영상차감기법의 진단적 가치를 알아보고자 하였다. 대상과 방법: 2015년 5월부터 2017년 2월까지 가도세틱산-조영증강 MRI를 시행 받고 수술을 시행한 hepatocellular carcinoma (이하 HCC) 고위험군 108명을 대상으로 하였다. 차감영상의 질 및 간문맥기와 이행기의 일반영상과 차감영상에서 피막 여부에 대해 평가하였고, 차감영상에서의 피막 여부가 Liver Imaging Reporting and Data System에 따른 간세포암 진단에 미치는 영향을 평가하였다. 결과: 수술 전 경동맥화학색전술을 시행 받았거나 차감영상의 질이 불만족스러운 34명의 환자를 제외한 74명의 환자에서 82개의 간 병변(간세포암 73개, 그 외 악성종양 5개, 양성종양 4개)에 대해 분석하였다. 피막의 발견에 대한 차감영상의 민감도, 정확도, 그리고 곡선하면적은 일반영상과 비교하여 통계적으로 유의하게 높았고(각 95.4%, 89.0%, 0.80; p < 0.001), 특이도는 동일하였다(64.7%). HCC의 진단에 대해서도 차감영상이 일반영상과 비교하여 민감도, 정확도, 그리고 곡선하면적이 통계적으로 유의하게 높았으며(각 82.2%, 79.3%, 0.69; p = 0.011), 특이도는 동일하였다(55.6%). 결론: 가도세틱산-조영증강 MRI에서 간문맥기 또는 이행기로부터의 차감영상은 간세포암 피막의 발견에 도움이 된다.

3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화 (MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space)

  • 박성수;김윤수;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.