• Title/Summary/Keyword: MRI 영상

Search Result 1,907, Processing Time 0.032 seconds

Functional Neuroimaging in Epilepsy: FDG-PET and SPECT (간질에서의 기능적 뇌영상:양전자방출단층촬영과 단일광전자방출 단층촬영)

  • Lee, Sang-Kun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. Ictal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

Intelligent Shape Analysis Using Multi-sensory Interaction (다중 감각 인터랙션을 이용한 지능형 형상 분석)

  • Kim, Jeong-Sik;Kim, Hyun-Joong;Choi, Soo-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.139-142
    • /
    • 2006
  • 본 논문에서는 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 다중 감각 기반의 지능형 3차원 형상 분석 방법을 소개한다. 지능형 형상 분석 방법은 3차원 모델의 구조에 대한 보다 상세한 정보를 제공한다. 특히 의료 분야에 사용될 경우 전문가의 개입을 최소화하여 질병 진단 및 치료 등에 사용될 수 있다. 본 연구에서는, MRI나 CT 영상으로부터 생성된 3차원 매개변수형 모델을 이용하여 유사 모델 집단을 대표하는 통계 형상을 구축한 후, SVM (Support Vector Machine) 학습 알고리즘을 이용하여 두 집단간 형상 차이를 분석한다. 3차원 형상에 대한 신속한 시각적 이해와 직관적 조작감은 물체 표면의 형상 변화를 분석하는데 효과적으로 사용될 수 있다. 본 논문에서는 물체 조작 및 관찰 등의 작업을 수행할 때, 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 인터랙션 기법을 사용하여 공간감과 깊이감을 향상시켜 형상 분석 결과를 효과적으로 분석한다. 본 연구에서는 해마, 관상 동맥, 뇌와 같은 인체 장기를 실험 데이터로 사용하여 제안한 SVM 기반의 분석 방법과 인터랙션 환경의 성능을 평가한다. 본 연구에서 구현한 SVM 기반 이진 분류기는 두 집단간 형상 차이를 효과적으로 분석하며, 또한 다중 감각 인터랙션은 사용자가 분석 결과를 관찰하고 카메라 및 형상을 효율적으로 조작하는 데 도움을 준다.

  • PDF

Extraction of the Femoral Heads in MR Images and Measurement of the Parameters for the Diagnosis of the Avascular Necrosis (MR 영상에서 대퇴골두 영역의 추출과 무혈성 괴사의 진단에 필요한 인자의 측정)

  • Lee, Kyung-Su;Lee, Sung-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.846-854
    • /
    • 2000
  • In this paper, we propose effecient methods to extract the femoral head region in MR images. The femoral head area in MRI is approximated using Hough transform and the anatomical features of the femoral heads. Then, modified region growing method is applied to extract the femoral head region. We measured the parameters for the diagnosis of the avascular necrosis of the femoral heads from the segmented femoral head region. The proposed methods are proved very effective to extract the femoral head of healthy volunteer and of the patient having heavy avascular necrosis. The measured parameters can be used very efficiently for the quantitative analysis and the diagnosis of the avascular necrosis of the femoral heads.

  • PDF

Arthroscopic Reduction of Irreducible Knee Dislocation - A Case Report - (정복 불가능한 슬관절 탈구의 관절경적 치료)

  • Jeong, Jin-Young
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.2
    • /
    • pp.161-164
    • /
    • 2009
  • Irreducible knee dislocation is a rare injury and often need an open procedure with ligaments reconstruction. This report describes a case of arthroscopic treatment of a patient with traumatic knee dislocation unable to reduce in a closed method. MRI revealed incarceration of the medial collateral ligament and capsule in the medial compartment. And arthroscopic examination confirmed incarcerated medial capsuloligamentous structures which prevented the knee from reduction. Arthroscopic procedure without ligaments reconstruction was complete when the medial condyle was well visualized and the knee reduced. After 4 weeks of immobilization in extension, range of motion exercise and gradual increases in weight bearing was allowed. At the 3- year follow-up, mild laxity was remained but the patient did not have any discomfort of doing ADL activity and showed full range of motion of the knee.

  • PDF

Magnetic Resonance Brain Image Contrast Enhancement Using Histogram Equalization Techniques (히스토그램 평형 기법을 이용한 자기 공명 두뇌 영상 콘트라스트 향상)

  • Ullah, Zahid;Lee, Su-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.83-86
    • /
    • 2019
  • Histogram equalization is extensively used for image contrast enhancement in various applications due to its effectiveness and its modest functions. In image research, image enhancement is one of the most significant and arduous technique. The image enhancement aim is to improve the visual appearance of an image. Different kinds of images such as satellite images, medical images, aerial images are affected from noise and poor contrast. So it is important to remove the noise and improve the contrast of the image. Therefore, for this purpose, we apply a median filter on MR image as the median filter remove the noise and preserve the edges effectively. After applying median filter on MR image we have used intensity transformation function on the filtered image to increase the contrast of the image. Than applied the histogram equalization (HE) technique on the filtered image. The simple histogram equalization technique over enhances the brightness of the image due to which the important information can be lost. Therefore, adaptive histogram equalization (AHE) and contrast limited histogram equalization (CLAHE) techniques are used to enhance the image without losing any information.

  • PDF

A review of Explainable AI Techniques in Medical Imaging (의료영상 분야를 위한 설명가능한 인공지능 기술 리뷰)

  • Lee, DongEon;Park, ChunSu;Kang, Jeong-Woon;Kim, MinWoo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.259-270
    • /
    • 2022
  • Artificial intelligence (AI) has been studied in various fields of medical imaging. Currently, top-notch deep learning (DL) techniques have led to high diagnostic accuracy and fast computation. However, they are rarely used in real clinical practices because of a lack of reliability concerning their results. Most DL models can achieve high performance by extracting features from large volumes of data. However, increasing model complexity and nonlinearity turn such models into black boxes that are seldom accessible, interpretable, and transparent. As a result, scientific interest in the field of explainable artificial intelligence (XAI) is gradually emerging. This study aims to review diverse XAI approaches currently exploited in medical imaging. We identify the concepts of the methods, introduce studies applying them to imaging modalities such as computational tomography (CT), magnetic resonance imaging (MRI), and endoscopy, and lastly discuss limitations and challenges faced by XAI for future studies.

Multi-User Virtual Reality System for Surgery-Planning (수술 계획을 위한 다중 사용자 가상현실 시스템)

  • Suyeon Park;Gayun Suh;HyeongHwan Shin;Junsu Cho;Jaejoon Jeong;Sei Kang;Bogyeong Seo;Minseo Lee;Seungwon Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.737-739
    • /
    • 2023
  • 몰입형 가상현실 시스템은 더 나은 3차원 시각정보를 제공할 수 있어, 의료계에서 해부학에 대한 이해를 높이는 데 사용되고 있다. 우리는 몰입형 가상현실에서 다중 사용자가 함께 MRI 영상으로부터 생성된 볼륨 렌더링 된 객체를 관찰하고 수술을 계획할 수 있는 시스템을 개발하여 소개하고자 한다.

Tricuspid Valve Imaging and Right Ventricular Function Analysis Using Cardiac CT and MRI

  • Yura Ahn;Hyun Jung Koo;Joon-Won Kang;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1946-1963
    • /
    • 2021
  • Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (CMR) can reveal the detailed anatomy and function of the tricuspid valve and right ventricle (RV). Quantification of tricuspid regurgitation (TR) and analysis of RV function have prognostic implications. With the recently available transcatheter treatment options for diseases of the tricuspid valve, evaluation of the tricuspid valve using CT and CMR has become important in terms of patient selection and procedural guidance. Moreover, CT enables post-procedural investigation of the causes of valve dysfunction, such as pannus or thrombus. This review describes the anatomy of the tricuspid valve and CT and CMR imaging protocols for right heart evaluation, including RV function and TR analyses. We also demonstrate the pre-procedural planning for transcatheter treatment of TR and imaging of postoperative complications using CT.

Patellofemoral Instability in Children: Imaging Findings and Therapeutic Approaches

  • Hee Kyung Kim;Shital Parikh
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.674-687
    • /
    • 2022
  • Patellofemoral instability (PFI) is common in pediatric knee injuries. PFI results from loss of balance in the dynamic relationship of the patella in the femoral trochlear groove. Patellar lateral dislocation, which is at the extreme of the PFI, results from medial stabilizer injury and leads to the patella hitting the lateral femoral condyle. Multiple contributing factors to PFI have been described, including anatomical variants and altered biomechanics. Femoral condyle dysplasia is a major risk factor for PFI. Medial stabilizer injury contributes to PFI by creating an imbalance in dynamic vectors of the patella. Increased Q angle, femoral anteversion, and lateral insertion of the patellar tendon are additional contributing factors that affect dynamic vectors on the patella. An imbalance in the dynamics results in patellofemoral malalignment, which can be recognized by the presence of patella alta, patellar lateral tilt, and lateral subluxation. Dynamic cross-sectional images are useful for in vivo tracking of the patella in patients with PFI. Therapeutic approaches aim to restore normal patellofemoral dynamics and prevent persistent PFI. In this article, the imaging findings of PFI, including risk factors and characteristic findings of acute lateral patellar dislocation, are reviewed. Non-surgical and surgical approaches to PFI in pediatric patients are discussed.

The Use of Transabdominal Ultrasound in Inflammatory Bowel Disease

  • Jiro Hata;Hiroshi Imamura
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.308-321
    • /
    • 2022
  • Transabdominal ultrasound (TAUS) is useful in all aspects of lesion screening, monitoring activity, or treating/diagnosing any related complications of inflammatory bowel disease. Its ability to screen or diagnose complications is almost the same as that of other methods, such as CT or MRI. Moreover, its noninvasiveness makes it a first-line examination method. A TAUS image depicting ulcerative colitis will show large intestinal wall thickening that is continuous from the rectum, which is mainly due to mucosal layer thickening, while for Crohn's disease, a TAUS image is characterized by a diversity in the areas affected, distribution, and layer structure. Indicators of activity monitoring include wall thickness, wall structure, and vascular tests that use Doppler ultrasound or contrast agents. While all of these have been reported to be useful, at this time, no single parameter has been established as superior to others; therefore, a comprehensive evaluation of these parameters is justified. In addition, evaluating the elasticity of lesions using elastography is particularly useful for distinguishing between fibrous and inflammatory stenoses. However, the lack of objectivity is the biggest drawback of using ultrasound. Standardizing and popularizing the ultrasound process will be necessary, including scanning methods, equipment settings, and image analysis.