• Title/Summary/Keyword: MRE

Search Result 111, Processing Time 0.027 seconds

Development of a real-time crop recognition system using a stereo camera

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yong-Joo;Chung, Sun-Ok;Nam, Kyu-Chul;Lee, Dae Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.315-326
    • /
    • 2020
  • In this study, a real-time crop recognition system was developed for an unmanned farm machine for upland farming. The crop recognition system was developed based on a stereo camera, and an image processing framework was proposed that consists of disparity matching, localization of crop area, and estimation of crop height with coordinate transformations. The performance was evaluated by attaching the crop recognition system to a tractor for five representative crops (cabbage, potato, sesame, radish, and soybean). The test condition was set at 3 levels of distances to the crop (100, 150, and 200 cm) and 5 levels of camera height (42, 44, 46, 48, and 50 cm). The mean relative error (MRE) was used to compare the height between the measured and estimated results. As a result, the MRE of Chinese cabbage was the lowest at 1.70%, and the MRE of soybean was the highest at 4.97%. It is considered that the MRE of the crop which has more similar distribution lower. the results showed that all crop height was estimated with less than 5% MRE. The developed crop recognition system can be applied to various agricultural machinery which enhances the accuracy of crop detection and its performance in various illumination conditions.

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Effects of Myofascial Release Exercise using an Inflatable Compression Therapy Ball on Spinal Flexibility in Adults (공기주입식공을 이용한 근막이완 운동이 성인의 척추 유연성에 미치는 영향)

  • Min, In-gi;Park, Jong-hang;Park, Hyun-sik
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.73-80
    • /
    • 2020
  • Background: This study examined the effects of myofascial release exercise using an inflatable compression therapy ball on spinal flexibility in adults to present basic data to improve spinal flexibility. Methods: The participants were assigned randomly to two groups: the myofascial release exercise group (MRE, n=60) and the stretching exercise group (SE, n=60). The MRE group performed myofascial release exercise for the erector spine muscles using an inflatable compression therapy ball. The SE group performed stretching exercises of the erector spine muscles. Each exercise was performed in 3 sets of 10 repetition daily for one week. Results: The within-group comparison revealed a statistically significant difference between the pre-intervention and post-intervention measurements in only MRE group (p<.05). On the other hand, the between-group comparison revealed the MRE group to show statistically significant improvement in spinal flexibility (p<.05). In effect size, the MRE group was -1.82 (95% CI= -2.24~-1.39), and the SE group was -.7 (95% CI= -1.15~-.41). Conclusion: Myofascial release exercise for the erector spine muscles using an inflatable compression therapy ball was more effective in improving spinal flexibility than stretching exercises for the erector spinae muscles. However, although myofascial release exercise using inflatable compression therapy ball is more effective than stretching exercise, it is insignificant, and research is also insignificant. It is believed that more diverse studies using props will be needed in the future.

A study of monitoring and reconfiguration electronics design in space computer unit (위성컴퓨터의 감시 및 재구성 회로 설계에 관한 연구)

  • Cho, Young-Ho;Won, Joo-Ho;Choi, Jae-Dong;Yang, Koon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1958_1959
    • /
    • 2009
  • This paper describes an MRE(Monitoring and Reconfiguration Electronics) which is in charge of SCU(Spacecraft Computer Unit) hardware failure monitoring as well as of protecting the satellite against system failures. To achieve it, MRE is designed that it is an independent function with respect to the rest of the SCU, that is, care is taken into account in order to minimize the interface(the failure propagation) between the MRE and the other SCU functions.

  • PDF

ANN Synthesis Models Trained with Modified GA-LM Algorithm for ACPWs with Conductor Backing and Substrate Overlaying

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.696-705
    • /
    • 2012
  • Accurate synthesis models based on artificial neural networks (ANNs) are proposed to directly obtain the physical dimensions of an asymmetric coplanar waveguide with conductor backing and substrate overlaying (ACPWCBSO). First, the ACPWCBSO is analyzed with the conformal mapping technique (CMT) to obtain the training data. Then, a modified genetic-algorithm-Levenberg-Marquardt (GA-LM) algorithm is adopted to train ANNs. In the algorithm, the maximal relative error (MRE) is used as the fitness function of the chromosomes to guarantee that the MRE is small, while the mean square error is used as the error function in LM training to ensure that the average relative error is small. The MRE of ANNs trained with the modified GA-LM algorithm is less than 8.1%, which is smaller than those trained with the existing GA-LM algorithm and the LM algorithm (greater than 15%). Lastly, the ANN synthesis models are validated by the CMT analysis, electromagnetic simulation, and measurements.

Estimation of the parameters in an Exponential Distribution with Type-II Censoring

  • Suk Bok Kang;Young Soo Suh;Young Suk Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.929-941
    • /
    • 1997
  • In this paper, we propose the minimum risk estimator (MRE) and the approximate maximum likelihood estimator (AMLE) of the location and the scale parameters of the two-parameter exponential distribution with Type-II censoring. The MRE's can be derived by minimizing the mean squared error among the class of estimators which include some estimators as special cases. We show that the MRE's are more efficient than the other estimators of the scale and the location parameter in the terms of the mean squared error.

  • PDF

The Effect of Gd-EOB-DPTA on the Stiffness Value of Magnetic Resonance Elastography in Evaluating Hepatic Fibrosis (간 섬유화 평가를 위한 MR elastography의 경직도에 대한 Gd-EOB-DTPA의 영향)

  • Lee, Jeong Eun;Lee, Jeong Min;Lee, Ye Ji;Yoon, Jeong-Hee;Lee, Kyung Bun;Han, Joon Koo;Choi, Byung Ihn
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • Purpose : To evaluate the effect of gadoxetic acid on the measurement of the stiffness value of MR elastography (MRE) used to evaluate hepatic fibrosis (HF). Materials and Methods: MRE was obtained in 32 patients with clinically suspected chronic liver disease, both before and after injection of gadoxetic acid. Two independent reviewers measured the stiffness values of the liver parenchyma on elastograms. The mean liver stiffness values were compared in the pre- and post-contrast MREs using the paired t-test. Intra-rater and inter-rater correlation was assessed using the intraclass correlation coefficient (ICC). The accuracy, sensitivity, and specificity of both pre- and post-contrast MREs was evaluated for the diagnosis of significant HF (${\geq}F2$) using cut off value of 3.1 kPa. Results: There were no significant differences in the stiffness values of the liver parenchyma on pre- and post-contrast MREs (p = 0.15 and 0.38 for each reader, respectively). Regarding intra-rater correlation, excellent agreement was noted on rater 1(ICC = 0.998) and rater 2 (ICC = 0.996). Excellent correlation regarding the measured stiffness values was noted on both pre- and post-contrast MREs (ICC = 0.988 for pre-contrast, ICC = 0.993 for post-contrast). The accuracy, sensitivity, and specificity of the pre- and post-contrast MREs for differentiating significant HF (${\geq}F2$) from ${\geq}F1$ were same as 71%, 60%, and 100%, respectively. Conclusion: As there was no significant difference in the stiffness measurements seen on MREs before and after administration of gadoxetic acids, it is therefore acceptable to perform MRE after contrast injection in order to evaluate HF.

Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD

  • Gu, Xiaoyu;Yu, Yang;Li, Jianchun;Li, Yancheng;Alamdari, Mehrisadat Makki
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1101-1121
    • /
    • 2016
  • Base isolation, one of the popular seismic protection approaches proven to be effective in practical applications, has been widely applied worldwide during the past few decades. As the techniques mature, it has been recognised that, the biggest issue faced in base isolation technique is the challenge of great base displacement demand, which leads to the potential of overturning of the structure, instability and permanent damage of the isolators. Meanwhile, drain, ventilation and regular maintenance at the base isolation level are quite difficult and rather time- and fund- consuming, especially in the highly populated areas. To address these challenges, a number of efforts have been dedicated to propose new isolation systems, including segmental building, additional storey isolation (ASI) and mid-storey isolation system, etc. However, such techniques have their own flaws, among which whipping effect is the most obvious one. Moreover, due to their inherent passive nature, all these techniques, including traditional base isolation system, show incapability to cope with the unpredictable and diverse nature of earthquakes. The solution for the aforementioned challenge is to develop an innovative vibration isolation system to realise variable structural stiffness to maximise the adaptability and controllability of the system. Recently, advances on the development of an adaptive magneto-rheological elastomer (MRE) vibration isolator has enlightened the development of adaptive base isolation systems due to its ability to alter stiffness by changing applied electrical current. In this study, an innovative semi-active storey isolation system inserting such novel MRE isolators between each floor is proposed. The stiffness of each level in the proposed isolation system can thus be changed according to characteristics of the MRE isolators. Non-dominated sorting genetic algorithm type II (NSGA-II) with dynamic crowding distance (DCD) is utilised for the optimisation of the parameters at isolation level in the system. Extensive comparative simulation studies have been conducted using 5-storey benchmark model to evaluate the performance of the proposed isolation system under different earthquake excitations. Simulation results compare the seismic responses of bare building, building with passive controlled MRE base isolation system, building with passive-controlled MRE storey isolation system and building with optimised storey isolation system.

Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults

  • Kim, Jin Kyem;Yoon, Haesung;Lee, Mi-Jung;Kim, Myung-Joon;Han, Kyunghwa;Koh, Hong;Kim, Seung;Han, Seok Joo;Shin, Hyun Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • Purpose: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. Materials and Methods: Patients (${\leq}20$ years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), $T2^*$, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. Results: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had $T2^*$ values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). Conclusion: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased $T2^*$ value (${\leq}3.8ms$) from iron deposition.