• 제목/요약/키워드: MR brake

검색결과 28건 처리시간 0.033초

자기 코어 형상에 따른 MR 브레이크의 성능 예측 (Performance Estimation of Magneto-rheological Brake with Different Magnetic Core Shapes)

  • 박정민;최승복;손정우
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.175-181
    • /
    • 2017
  • In the present work, to achieve high braking performance with restricted size, characteristics of magneto-rheological (MR) fluid brake is numerically investigated considering different magnetic core shapes. As a first step, structural configuration of the MR brakes are proposed with four different magnetic core shapes, such as single flat, single inclined, dual flat and dual inclined. To estimate braking performance of the proposed MR brakes, electromagnetic analysis is carried out and the results of magnetic field intensity distribution are observed. Based on the electromagnetic analysis results, braking torque of the MR brake is estimated according to magnitude of current input and results are discussed. It is observed that enhanced braking torque can be achieved by adopting the modified magnetic core shape under limited small size of the MR brake.

MR Brake를 이용한 공압 머니퓰레이터의 과도응답특성의 향상 (Improvement of Transient Response Characteristics of Pneumatic Manipulator using MR Brake)

  • 안경관;송주영
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.17-22
    • /
    • 2004
  • The goal of this paper is to improve the position control performance of pneumatic rotary actuator with variable brake using Magneto-Rheological Fluid. The air compressibility and the lack of damping of the pneumatic actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In this study, a variable rotary brake comprising Magneto-Rheological Fluid is equipped to the joint of a pneumatic manipulator. Experiments of step response have proved that the transient response of the manipulator could be improved compared with that of the conventional control algorithm by using a phase plane switching control algorithm.

  • PDF

MR 브레이크의 내구성에 따른 제어성능평가 (Control Performance Evaluation of MR Brake Depending on Durability)

  • 김완호;박진하;양순용;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.660-666
    • /
    • 2016
  • This paper presents performance comparison results of magneto-rheological (MR) brake in the sense of wear characteristics. To create wear circumstance, the brake is operated in 100 000 cycles by DC motor. To make wear test in same design parameters such as the radius of the housing, ferromagnetic disc and gap size, small sample of stainless are inserted in housing of MR brake. The performances of brake are compared between the initial stage (no wear) and 100 000 revolution cycles operated stage (wear). At each circumstance, torque of the brake is measured and compared by applying step current and sinusoidal control input. The controller used in this work is a simple, but effective PID controller. It is demonstrated that the wear behavior is more obvious as the operating cycle is increased in the torque control process.

MR 회전형 브레이크를 이용한 하지 근력 증진용 헬스 자전거 개발 (Development of a Health Bicycle for Improving the Muscle Strength of Lower Limb using MR Rotary Brake)

  • 윤영일;권대규;김동욱;김정자;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.832-839
    • /
    • 2007
  • In this study, a new bicycle system was developed to improve muscular strength using the Magneto-Rheological(MR) rotary brake. The friction load of the MR rotary brake is adjusted according to muscle strength of the subjects. The characteristic of muscular strength was studied with various friction loads of MR rotary brake. The friction load was occurred with the current, applied to the MR. rotary brake. Experiments was composed of several cycling trials for various friction loads. In training programs involving muscle improvement, it is necessary to confirm muscle activity and fatigue. To measure the muscle activity and fatigue, EMG signals of rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), vastus lateralis (VL), vastus medialis (VAS), gastrocnemius (GAS), tibialis anterior (TA) and soleus (SOL) muscles were collected with surface electromyography and analyzed into time and frequency domain. The experimental results showed that the muscle activity according to the applied current to the MR rotary brake was significantly different. The more the current was applied, the higher value of the integrated EMG (IEMG) was obtained. Especially, the magnitude of IEMG of the RF, BF, TFL and VL varied in direct proportion to the current. However, there was not significant in the median frequency as the cycling time continue.

DC 모터와 MR 브레이크로 이루어진 하이브리드 구동기의 힘 제어 (Force Control of Hybrid Actuator Comprising DC Motor and MR Brake)

  • 최익;권동수;안진웅
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.46-55
    • /
    • 2006
  • 본 논문은 DC 모터와 MR(magnetorheological) 브레이크를 갖는 하이브리드 구동기의 제어 방법을 제안한다 로봇을 포함하여 여러 영역에서 이용되는 DC 모터는 대표적인 능동형구동기로 중량 대비 출력 이 작고, 출력한계로 인해 어느 정도 이상의 제어 이득에서 힘 제어 특성이 불안정해지는 성질이 있다. 따라서 이러한 DC 모터의 제어 불안정성을 해결하고, 투명성을 높이기 위해 반능동형 구동기인 MR 브레이크를 DC 모터와 병렬로 연결한 하이브리드 구동기를 제안하고 이에 대하여 네트워크 이론에 기반을 둔 제어 방법을 제안한다. 입력전류의 방향에 따라 스스로 출력을 내는 DC 모터와는 달리 MR 브레이크는 입력전류의 부호가 바뀌는 것에 상관없이 외부의 부하와 반대의 출력을 내는 것이 그 특징이다. 이러한 MR 브레이크의 성질을 수동적이라 하고 네트워크 이론의 수동성을 이용한 하이브리드 구동기의 힘 제어 방법을 제안하고 실험을 통해 이의 성능과 안정성을 입증하였다.

영구자석을 이용한 회전형 MR 브레이크의 설계 (Design of MR rotary brake with permanent magnet)

  • 윤동원;박중호;함영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1416-1421
    • /
    • 2007
  • In this paper, a novel MR brake with permanent magnet is developed. This system consists of rotary disk, permanent magnet, spring and MR fluid. Permanent magnets are attached to the rotary disk and moves in the direction of radius. The magnets are linked to rotor axis by spring. As rotation speed increases, the magnets move outward from the center of the system by centrifugal force in the MR fluid. A proper design of stator or case makes the system have unique torque characteristics. To show the performance of the system, the research is performed by following procedure. First, the electromagnetic characteristic of the system is analyzed using FEM and commercial code, Maxwell is used for this analysis. Then, torque is calculated using the result of the electromagnetic analysis to validate the performance of the system.

  • PDF

MR 회전형 브레이크를 적용한 자전거 에르고미터의 주행 특성 (Pedaling Characteristics of Cycle Ergometer Using the MR Rotary Brake)

  • 윤영일;권대규;김동욱;김정자;김남균
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1669-1673
    • /
    • 2008
  • A new cycle ergometer using a Magneto-Rheological (MR) rotary brake system has been developed for rehabilitation of hemiplegia patients to reduce uneven pedaling characteristics. For this purpose, a control method to adjust the resistance of the MR rotary brake in real time based on the magnitude of the muscular force exerted by the subject has been devised so that the mechanical resistance to the pedaling can be minimized when the affected leg was engaged for pedaling. A series of experiments were carried out with and without the engagement of this real-time control mode of MR rotary brake at different pedaling rate to find out the effect of the real-time control mode. The characteristics of the pedaling for these specific conditions were analyzed based on the variations in angular velocities of the pedal unit. The results showed that the variations in the angular velocities were decreased by 42.9% with the control mode. The asymmetry of pedaling between dominant and non-dominant leg was 19.63% in non-control mode and 1.97% in the control mode. The characteristics of electromyography(EMG) in the lower limbs were also measured. The observation showed that Integrated EMG(IEMG) reduced with the control mode. Therefore, the new bicycle system using MR brake with the real time control of mechanical resistance was found to be effective in recovering the normal pedaling pattern by reducing unbalanced pedaling characteristics caused by disparity of muscular strength between affected and unaffected leg.

MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어 (Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake)

  • 노경욱;한영민;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.516-522
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological(MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.