• Title/Summary/Keyword: MR 영상

Search Result 1,025, Processing Time 0.027 seconds

Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke

  • Yiran Zhou;Di Wu;Su Yan;Yan Xie;Shun Zhang;Wenzhi Lv;Yuanyuan Qin;Yufei Liu;Chengxia Liu;Jun Lu;Jia Li;Hongquan Zhu;Weiyin Vivian Liu;Huan Liu;Guiling Zhang;Wenzhen Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.8
    • /
    • pp.811-820
    • /
    • 2022
  • Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.

Usefulness of Silent MRA for Evaluation of Aneurysm after Stent-Assisted Coil Embolization

  • You Na Kim;Jin Wook Choi;Yong Cheol Lim;Jihye Song;Ji Hyun Park;Woo Sang Jung
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.246-255
    • /
    • 2022
  • Objective: To determine the usefulness of Silent MR angiography (MRA) for evaluating intracranial aneurysms treated with stent-assisted coil embolization. Materials and Methods: Ninety-nine patients (101 aneurysms) treated with stent-assisted coil embolization (Neuroform atlas, 71 cases; Enterprise, 17; LVIS Jr, 9; and Solitaire AB, 4 cases) underwent time-of-flight (TOF) MRA and Silent MRA in the same session using a 3T MRI system within 24 hours of embolization. Two radiologists independently interpreted both MRA images retrospectively and rated the image quality using a 5-point Likert scale. The image quality and diagnostic accuracy of the two modalities in the detection of aneurysm occlusion were further compared based on the stent design and the site of aneurysm. Results: The average image quality scores of the Silent MRA and TOF MRA were 4.38 ± 0.83 and 2.78 ± 1.04, respectively (p < 0.001), with an almost perfect interobserver agreement. Silent MRA had a significantly higher image quality score than TOF MRA at the distal internal carotid artery (n = 57, 4.25 ± 0.91 vs. 3.05 ± 1.16, p < 0.001), middle cerebral artery (n = 21, 4.57 ± 0.75 vs. 2.19 ± 0.68, p < 0.001), anterior cerebral artery (n = 13, 4.54 ± 0.66 vs. 2.46 ± 0.66, p < 0.001), and posterior circulation artery (n = 10, 4.50 ± 0.71 vs. 2.90 ± 0.74, p = 0.013). Silent MRA had superior image quality score to TOF MRA in the stented arteries when using Neuroform atlas (4.66 ± 0.53 vs. 3.21 ± 0.84, p < 0.001), Enterprise (3.29 ± 1.59 vs. 1.59 ± 0.51, p = 0.003), LVIS Jr (4.33 ± 1.89 vs. 1.89 ± 0.78, p = 0.033), and Solitaire AB stents (4.00 ± 2.25 vs. 2.25 ± 0.96, p = 0.356). The interpretation of the status of aneurysm occlusion exhibited significantly higher sensitivity with Silent MRA than with TOF MRA when using the Neuroform Atlas stent (96.4% vs. 14.3%, respectively, p < 0.001) and LVIS Jr stent (100% vs. 20%, respectively, p = 0.046). Conclusion: Silent MRA can be useful to evaluate aneurysms treated with stent-assisted coil embolization, regardless of the aneurysm location and type of stent used.

Comparison of Clinical and Radiologic Findings Between Perforated and Non-Perforated Choledochal Cysts in Children

  • Yu Jin Kim;Soo-Hyun Kim;So-Young Yoo;Ji Hye Kim;Soo-Min Jung;Sanghoon Lee;Jeong-Meen Seo;Sung-Hoon Moon;Tae Yeon Jeon
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.271-279
    • /
    • 2022
  • Objective: To compare the clinical and radiologic findings between perforated and non-perforated choledochal cysts in children. Materials and Methods: Fourteen patients (mean age ± standard deviation, 1.7 ± 1.2 years) with perforated choledochal cysts (perforated group) and 204 patients (3.6 ± 3.8 years) with non-perforated choledochal cysts (non-perforated group) were included between 2000 and 2019. All patients underwent choledochal cyst excision after ultrasound, CT, or MR cholangiopancreatography. Relevant data including demographics, clinical symptoms, laboratory findings, imaging findings, and outcomes were analyzed. Statistical differences were compared using the Mann-Whitney U test and Fisher's exact test. Results: Choledochal cyst perforation occurred only in children under the age of 4 years. Acute symptoms, including fever (p < 0.001), were more common in the perforated group than in the non-perforated group. High levels of white blood cells (p = 0.004), C-reactive protein (p < 0.001), and serum amylase (p = 0.002), and low levels of albumin (p < 0.001) were significantly associated with the perforated group. All 14 patients with perforated choledochal cysts had ascites, whereas only 16% (33/204) of patients in the non-perforated group had ascites (p < 0.001). In the subgroup of patients who had ascites, a large amount of ascites (p = 0.001), increase in the amount of ascites in a short time (p < 0.001), complex ascites (p < 0.001), and perihepatic pseudocysts (p < 0.001) were more common in the perforated group than in the non-perforated group. Conclusion: Children with perforated choledochal cysts have characteristic clinical and radiologic findings compared to those with non-perforated choledochal cysts. In young children with choledochal cysts, perforation should be differentiated in cases with acute symptoms, laboratory abnormalities, and characteristic ascites findings.

Is the Mixed Use of Magnetic Resonance Enterography and Computed Tomography Enterography Adequate for Routine Periodic Follow-Up of Bowel Inflammation in Patients with Crohn's Disease?

  • Jiyeon Ha;Seong Ho Park;Jung Hee Son;Ji Hun Kang;Byong Duk Ye;So Hyun Park;Bohyun Kim;Sang Hyun Choi;Sang Hyoung Park;Suk-Kyun Yang
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.30-41
    • /
    • 2022
  • Objective: Computed tomography enterography (CTE) and magnetic resonance enterography (MRE) are considered substitutes for each other for evaluating Crohn's disease (CD). However, the adequacy of mixing them for routine periodic follow-up for CD has not been established. This study aimed to compare MRE alone with the mixed use of CTE and MRE for the periodic follow-up of small bowel inflammation in patients with CD. Materials and Methods: We retrospectively compared two non-randomized groups, each comprising 96 patients with CD. One group underwent CTE and MRE (MRE followed by CTE or vice versa) for the follow-up of CD (interval, 13-27 months [median, 22 months]), and the other group underwent MRE alone (interval, 15-26 months [median, 21 months]). However, these two groups were similar in clinical characteristics. Three independent readers from three different institutions determined whether inflammation had decreased, remained unchanged, or increased within the entire small bowel and the terminal ileum based on sequential enterography of the patients after appropriate blinding. We compared the two groups for inter-reader agreement and accuracy (terminal ileum only) using endoscopy as the reference standard for enterographic interpretation. Results: The inter-reader agreement was greater in the MRE alone group for the entire small bowel (intraclass correlation coefficient [ICC]: 0.683 vs. 0.473; p = 0.005) and the terminal ileum (ICC: 0.656 vs. 0.490; p = 0.030). The interpretation accuracy was higher in the MRE alone group without statistical significance (70.9%-74.5% vs. 57.9%-64.9% in individual readers; adjusted odds ratio = 3.21; p = 0.077). Conclusion: The mixed use of CTE and MRE was inferior to MRE alone in terms of inter-reader reliability and could probably be less accurate than MRE alone for routine monitoring of small bowel inflammation in patients with CD. Therefore, the consistent use of MRE is favored for this purpose.

Feasibility of Free-Breathing, Non-ECG-Gated, Black-Blood Cine Magnetic Resonance Images With Multitasking in Measuring Left Ventricular Function Indices

  • Pengfei Peng;Xun Yue;Lu Tang;Xi Wu;Qiao Deng;Tao Wu;Lei Cai;Qi Liu;Jian Xu;Xiaoqi Huang;Yucheng Chen;Kaiyue Diao;Jiayu Sun
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1221-1231
    • /
    • 2023
  • Objective: To clinically validate the feasibility and accuracy of cine images acquired through the multitasking method, with no electrocardiogram gating and free-breathing, in measuring left ventricular (LV) function indices by comparing them with those acquired through the balanced steady-state free precession (bSSFP) method, with multiple breath-holds and electrocardiogram gating. Materials and Methods: Forty-three healthy volunteers (female:male, 30:13; mean age, 23.1 ± 2.3 years) and 36 patients requiring an assessment of LV function for various clinical indications (female:male, 22:14; 57.8 ± 11.3 years) were enrolled in this prospective study. Each participant underwent cardiac magnetic resonance imaging (MRI) using the multiple breath-hold bSSFP method and free-breathing multitasking method. LV function parameters were measured for both MRI methods. Image quality was assessed through subjective image quality scores (1 to 5) and calculation of the contrast-to-noise ratio (CNR) between the myocardium and blood pool. Differences between the two MRI methods were analyzed using the Bland-Altman plot, paired t-test, or Wilcoxon signed-rank test, as appropriate. Results: LV ejection fraction (LVEF) was not significantly different between the two MRI methods (P = 0.222 in healthy volunteers and P = 0.343 in patients). LV end-diastolic mass was slightly overestimated with multitasking in both healthy volunteers (multitasking vs. bSSFP, 60.5 ± 10.7 g vs. 58.0 ± 10.4 g, respectively; P < 0.001) and patients (69.4 ± 18.1 g vs. 66.8 ± 18.0 g, respectively; P = 0.003). Acceptable and comparable image quality was achieved for both MRI methods (multitasking vs. bSSFP, 4.5 ± 0.7 vs. 4.6 ± 0.6, respectively; P = 0.203). The CNR between the myocardium and blood pool showed no significant differences between the two MRI methods (18.89 ± 6.65 vs. 18.19 ± 5.83, respectively; P = 0.480). Conclusion: Multitasking-derived cine images obtained without electrocardiogram gating and breath-holding achieved similar image quality and accurate quantification of LVEF in healthy volunteers and patients.

Cutoff Values for Diagnosing Hepatic Steatosis Using Contemporary MRI-Proton Density Fat Fraction Measuring Methods

  • Sohee Park;Jae Hyun Kwon;So Yeon Kim;Ji Hun Kang;Jung Il Chung;Jong Keon Jang;Hye Young Jang;Ju Hyun Shim;Seung Soo Lee;Kyoung Won Kim;Gi-Won Song
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1260-1268
    • /
    • 2022
  • Objective: To propose standardized MRI-proton density fat fraction (PDFF) cutoff values for diagnosing hepatic steatosis, evaluated using contemporary PDFF measuring methods in a large population of healthy adults, using histologic fat fraction (HFF) as the reference standard. Materials and Methods: A retrospective search of electronic medical records between 2015 and 2018 identified 1063 adult donor candidates for liver transplantation who had undergone liver MRI and liver biopsy within a 7-day interval. Patients with a history of liver disease or significant alcohol consumption were excluded. Chemical shift imaging-based MRI (CS-MRI) PDFF and high-speed T2-corrected multi-echo MR spectroscopy (HISTO-MRS) PDFF data were obtained. By temporal splitting, the total population was divided into development and validation sets. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of the MRI-PDFF method. Two cutoff values with sensitivity > 90% and specificity > 90% were selected to rule-out and rule-in, respectively, hepatic steatosis with reference to HFF ≥ 5% in the development set. The diagnostic performance was assessed using the validation set. Results: Of 921 final participants (624 male; mean age ± standard deviation, 31.5 ± 9.0 years), the development and validation sets comprised 497 and 424 patients, respectively. In the development set, the areas under the ROC curve for diagnosing hepatic steatosis were 0.920 for CS-MRI-PDFF and 0.915 for HISTO-MRS-PDFF. For ruling-out hepatic steatosis, the CS-MRI-PDFF cutoff was 2.3% (sensitivity, 92.4%; specificity, 63.0%) and the HISTO-MRI-PDFF cutoff was 2.6% (sensitivity, 88.8%; specificity, 70.1%). For ruling-in hepatic steatosis, the CS-MRI-PDFF cutoff was 3.5% (sensitivity, 73.5%; specificity, 88.6%) and the HISTO-MRI-PDFF cutoff was 4.0% (sensitivity, 74.7%; specificity, 90.6%). Conclusion: In a large population of healthy adults, our study suggests diagnostic thresholds for ruling-out and ruling-in hepatic steatosis defined as HFF ≥ 5% by contemporary PDFF measurement methods.

Comparative Study between ZOOMit and Conventional Intravoxel Incoherent Motion MRI for Assessing Parotid Gland Abnormalities in Patients with Early- or Mid-Stage Sjögren's Syndrome

  • Qing-Qing Zhou;Wei Zhang;Yu-Sheng Yu;Hong-Yan Li;Liang Wei;Xue-Song Li;Zhen-Zhen He;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.455-465
    • /
    • 2022
  • Objective: To compare the reproducibility and performance of quantitative metrics between ZOOMit and conventional intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) in the diagnosis of early- and mid-stage Sjögren's syndrome (SS). Materials and Methods: Twenty-two patients (mean age ± standard deviation, 52.0 ± 10.8 years; male:female, 2:20) with early- or mid-stage SS and 20 healthy controls (46.9 ± 14.6 years; male:female, 7:13) were prospectively enrolled in our study. ZOOMit IVIM and conventional IVIM MRI were performed simultaneously in all individuals using a 3T scanner. Quantitative IVIM parameters - including tissue diffusivity (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) - inter- and intra-observer reproducibility in measuring these parameters, and their ability to distinguish patients with SS from healthy individuals were assessed and compared between ZOOMit IVIM and conventional IVIM methods, appropriately. MR gland nodular grade (MRG) was also examined. Results: Inter- and intra-observer reproducibility was better with ZOOMit imaging than with conventional IVIM imaging (ZOOMit vs. conventional, intraclass correlation coefficient of 0.897-0.941 vs. 0.667-0.782 for inter-observer reproducibility and 0.891-0.968 vs. 0.814-0.853 for intra-observer reproducibility). Significant differences in ZOOMit f, ZOOMit D*, D*, conventional D*, and MRG between patients with SS and healthy individuals (all p < 0.05) were observed. ZOOMit D* outperformed conventional D* in diagnosing early- and mid-stage SS (area under receiver operating curve, 0.867 and 0.658, respectively; p = 0.002). The combination of ZOOMit D*, MRG, and ZOOMit f as a new diagnostic index for SS, increased diagnostic area under the curve to 0.961, which was higher than that of any single parameter (all p < 0.01). Conclusion: Considering its better reproducibility and performance, ZOOMit IVIM may be preferred over conventional IVIM MRI, and may subsequently improve the ability to diagnose early- and mid-stage SS.

The Significance of Maturation Score of Brain Magnetic Resonance Imaging in Extremely Low Birth Weight Infant (초극소 저체중 출생아의 뇌 MRI 상 Maturation Score의 의의)

  • Song, In-Gu;Kim, Su-Yeong;Kim, Cur-Rie;Kim, Yoon-Joo;Shin, Seung-Han;Lee, Seung-Hyun;Lee, Jae-Myoung;Lee, Ju-Young;Kim, Ji-Young;Sohn, Jin-A;Lee, Jin-A;Choi, Chang-Won;Kim, Ee-Kyung;Cheon, Jung-Eun;Kim, Woo-Sun;Kim, Han-Suk;Kim, Byeong-II;Kim, In-One;Choi, Jung-Hwan
    • Neonatal Medicine
    • /
    • v.18 no.2
    • /
    • pp.310-319
    • /
    • 2011
  • Purpose: The aim of this study was to investigate the effect of perinatal risk factors on brain maturation and the relationship of brain maturation and neurodevelopmental outcomes with brain maturation scoring system in brain MRI. Methods: ELBWI infants born at the Seoul National University Children's Hospital from January 2006 to December 2010 were included. A retrospective analysis was performed with their medical record and brain MR images acquired at near full term. We read brain MRI and measured maturity with total maturation score (TMS). TMS is a previously developed anatomic scoring system to assess brain maturity. The total maturation score was used to evaluate the four parameters of maturity: (1) myelination, (2) cortical infolding, (3) involution of glial cell migration bands, and (4) presence of germinal matrix tissue. Results: Images from 124 infants were evaluated. Their mean gestational age at birth was 27.1${\pm}$2.1 weeks, and mean birth weight was 781.5${\pm}$143.9 g. The mean TMS was 10.8${\pm}$2.0. TMS was significantly related to the postmenstrual age (PMA) of the infant, increasing with advancing postmenstrual age (P<0.001). TMS showed no significance with neurodevelopmental delay, and with brain injury, respectively. Conclusion: TMS was developed for evaluating brain maturation in conventional brain MRI. The results of this study suggest that TMS was not useful for predicting neurodevelopmental delay, but further studies are needed to make standard score for each PMA and to re-evaluate the relationship between brain maturation and neurodevelopmental delay.

T2 Relaxation Times of the Cingulate Cortex, Amygdaloid Body, Hippocampal Body, and Insular Cortex: Comparison of 1.5 T and 3.0 T (대상회 피질, 편도체, 해마체, 도피질의 T2 이완시간: 1.5테슬러와 3.0테슬러 자기공명영상장치의 비교)

  • Lee, Ho-Joon;Kim, Eung-Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • Purpose : To compare T2 relaxation times (T2) in the cingulate cortex, amygdaloid body, hippocampal body, and insular cortex between 1.5T and 3.0T MR imagers. Materials and Methods : Twelve healthy volunteers underwent FLAIR and CPMG imaging perpendicular to the hippocampal body at both 3.0T and 1.5T. T2 was measured in the cingulate cortex, amygdaloid body, hippocampal body, and insular cortex. The T2 relaxation time ratios of the cingulate cortex, insular cortex, and amygdaloid body to the hippocampal body were compared between 1.5T and 3.0T. Results : The mean T2 of the cingulate cortex, amygdaloid body, hippocampal body, and insular cortex at 1.5T were $109.5{\pm}3.1$, $117.0{\pm}7.1$, $114.7{\pm}2.4$, and $111.3{\pm}2.4$, respectively; $99.7{\pm}3.8$, $100.7{\pm}4.3$, $97.9{\pm}3.4$, and $96.2{\pm}2.0$, respectively, at 3.0T. Percentage changes of T2 in the cingulate cortex, insular cortex, amygdaloid body, and hippocampal body at 3.0T with respect to those at 1.5T were -8.9%, -13.5%, -14.6%, and -13.5%, respectively. The mean T2 ratios of the cingulate gyrus, insular cortex, and amygdaloid body to the hippocampal body at 1.5T and 3.0T were 0.96 and 1.02 (p = 0.003); 1.02 and 1.03 (p>0.05); 0.97 and 0.98 (p>0.05), respectively. Conclusion : T2 decrease in the cingulate cortex was less than the amygdaloid body, insular cortex, and hippocampal body at 3.0T. The mean T2 ratio of the cingulate gyrus to the hippocampal body was significantly different between 1.5T and 3.0T.

The Molecular Weight Dependance of Paramagnetic Gd-chelates on T1 and T2 Relaxation Times (상자성 복합체의 분자량에 따른 T1 및 T2 자기이완시간에 관한 연구)

  • Kim In-Sung;Lee Young-Ju;Kim Ju-Hyun;Sujit Dutta;Kim Suk-Kyung;Kim Tae-Jeong;Kang Duk-Sik;Chang Yong-Min
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • To evaluate the T1, T2 magnetic relaxation properties of water molecule according to molecular weight of paramagnetic complex. 4-aminomethyicyclohexane carboxylic acid (0.63 g, 4 mmol) was mixed with the suspension solution of DMF (15 ml) and DTPA-bis-anhydride (0.71 g, 2 mmol) to synthesize the ligand. The ligand was then mixed with $Gd_2O_3$ (0.18 g, 0.5 mmol) to synthesize Gd-chelate. For the measurement of magnetic relaxivity of paramagnetic compounds, the compounds were diluted to 1 mM and then the relaxation times were measured at 1.57 (64 MHz). Inversion-recovery pulse sequence was employed for T1 relaxation measurement and CPMG (Carr-Purcell-Meiboon-Gill) pulse sequence was employed for T2 relaxation measurement. In case of inversion recovery sequence, total 35 images with different inversion time(T1)s ranging from 50 msec to 1,750 msec. To estimate the relaxation times, the signal intensity of each sample was measured using region of Interest (ROI) and then fitted by non-linear least square method to yield T1, T2 relaxation times and also R1 and R2. Compared to T1=($205.1{\pm}2.57$) msec and T2=($209.4{\pm}4.28$) msec of Omniscan (Gadodiamide), which is commercially available paramagnetic MR agent, T1 and T2 values of new paramagnetic complexes were reduced along with their molecular weight. That is, T1 value was ranged from $(96.35{\pm}2.04)\;to\;(79.38{\pm}1.55)$ msec and T2 value was ranged from $(91.02{\pm}2.08)\;to\;(76.66{\pm}1.84)$ msec. Among new paramagnetic complexes, there is a tendency that the R1 and R2 increase as the molecular weight is increases. As molecular weight of paramagnetic complex increases, T1 and T2 relaxation times reduce and thus the increase of relaxivity (R1 and R2) Is proportional to molecular weight.

  • PDF