• Title/Summary/Keyword: MR(Magneto-rheological)

Search Result 209, Processing Time 0.028 seconds

Design of a Magneto-Rheological Fluid Clutch for Machine Tool Application (공작기계 적용을 위한 MR 클러치 설계)

  • Kim, Ock Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2009
  • Magneto-Rheological(MR) fluid composes of a base fluid and ferromagnetic particles less than tens of micrometer size dispersed in the fluid. It is called as a smart material because its rheological properties are changable by a magnetic field. Its important applications are active devices such as controllable dampers and controllable clutches. The merit of those products is that their functional characteristics are controllable such that they enable active control strategies. This paper proposes an idea for machine tool applications of the MR fluid clutch as a safety device for power transmission. FEM has been used for magnetic field analyses and the results are compared with some former experiments. Some design syntheses of the MR clutches are suggested and hopefully considered that it may be an effective safety device for power transmission of machine tools.

  • PDF

Design of Direct-Shear Mode MR Damper (전단 모드형 자성유체댐퍼의 설계)

  • Kim, Hae-Lan;Lee, Young-Shin;Lee, Eun-Yup;Lee, Gyu-Seop;Oh, Boo-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.626-631
    • /
    • 2007
  • MR(Magneto-rheological) fluid is smart material that can be changed viscosity by controlling the magnetic field. MR damper with MR fluid can control damping force. It can be used extensively many engineering structures for reducing the effect of dynamic external disturbances. There are three kinds of MR dampers, such as valve mode, direct-shear mode and squeeze mode. In this study, design process of direct-shear mode MR damper with the MR fluid gap was developed. The parameters that used in the direct-shear mode MR damper Informed from the experiment of valve mode MR damper of Lord company. Magnetic analysis with finite element method was performed to find the optimal annular gap.

  • PDF

A study on the force control of a servo actuator with built-in MR Valve (MR 밸브 내장형 서보 액추에이터의 힘 제어에 관한 연구)

  • Ahn K.K.;Song J.Y.;Kim J.S.;Ahn Y.K.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A servo actuator with a valve using MR (Magneto-Rheological) fluid is proposed for fluid control systems. The MR fluid is well known as a functional fluid whose apparent viscosity is controlled by the applied magnetic field strength. The pressure in the MR cylinder can be controlled by the applied magnetic field strength. Good points of the MR cylinder are more simple, compact and reliable structure than a conventional oil hydraulic cylinder. The experimental results show that the MR cylinder could be used as a servo actuator.

  • PDF

A Numerical Study of New Vehicle Hydraulic Lift Activation by a Magneto-rheological Valve System for Precise Position Control (정밀 위치 제어를 위해 MR 밸브 시스템을 활용한 차량 유압 리프트에 대한 수치해석적 고찰)

  • Lee, TaeHoon;Park, Jhin-Ha;Choi, Seung-Bok;Shin, Cheol-Soo;Choi, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • Recently, conventional hydraulic car lift systems face the technological limitations due to a lack of height control. The demand for height controllability is required in many tasks such as wheel alignment, and requires compensation for the structural deformation of the lift caused by irregular load distribution. In order to resolve this limitation of the conventional car lift, in this work, a new type of a hydraulic vehicle lift using a magneto-rheological (MR) valve system is proposed and analyzed. Firstly, the dynamic model of vehicle lift is formulated to evaluate control performance; subsequently, an MR valve is designed to obtain the desired pressure drop required in the car lift. Next, a proportional-integral-derivative (PID) controller is formulated to achieve accurate control of the lifting height and then computer simulations are undertaken to show accurate height control performances of the proposed new car lift system.

Semi-active control of ship mast vibrations using magneto-rheological dampers

  • Cheng, Y.S.;Au, F.T.K.;Zhong, J.P.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.679-698
    • /
    • 2008
  • On marine vessels, delicate instruments such as navigation radars are normally mounted on ship masts. However the vibrations at the top of mast where the radar is mounted often cause serious deterioration in radar-tracking resolution. The most serious problem is caused by the rotational vibrations at the top of mast that may be due to wind loading, inertial loading from ship rolling and base excitations induced by the running propeller. This paper presents a method of semi-active vibration control using magneto-rheological (MR) dampers to reduce the rotational vibration of the mast. In the study, the classical optimal control algorithm, the independent modal space control algorithm and the double input - single output fuzzy control algorithm are employed for the vibration control. As the phenomenological model of an MR damper is highly nonlinear, which is difficult to analyse, a back- propagation neural network is trained to emulate the inverse dynamic characteristics of the MR damper in the analysis. The trained neural network gives the required voltage for each MR damper based on the displacement, velocity and control force of the MR damper quickly. Numerical simulations show that the proposed control methods can effectively suppress the rotational vibrations at the top of mast.

Application Study of Magneto-Rheological Elastomer to Friction Control (자기유변탄성체의 마찰제어적용 연구)

  • Lian, Chenglong;Lee, Deuk-Won;Lee, Kwang-Hee;Lee, Chul-Hee;Kim, Cheol-Hyun;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.107-111
    • /
    • 2012
  • In this study, application feasibility of Magneto-rheological elastomer to friction control is investigated to identify the reciprocating friction and wear performance in applied magnetic field. Friction and wear of MR elastomerare measured by reciprocating tester by controlling the magnetic field. In the case of applied magnetic field, the coefficient of friction increases as both load and velocity increase. For the case of no magnetic field, the value of coefficient of friction hardly changes during the test. The amount of destruction is measured through cross section images of MR elastomer after tests. The depths of destruction are compared for MR elastomer with or without magnetic field. The results show that the depth of destruction of MR elastomer with magnetic field is deeper than without magnetic field. Based on the obtained results, optimal braking and driving performance can be achieved by controlling the coefficient of friction of MR elastomer, which can be applied to various industrial applications such as driving systems of automobiles and robots.

Response and control of jacket structure with magneto-rheological damper at multiple locations/combinations

  • Syed, Khaja A.A.;Kumar, Deepak
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.201-221
    • /
    • 2018
  • In this paper a comprehensive study for the structural control of Jacket platform with Magneto-Rheological (MR) damper is presented. The control is implemented as a closed loop feedback of the applied voltage in the MR Damper using fuzzy logic. Nine cases of combinations with MR damper are presented to complete the work. The selection of the MR damper (RD 1005-3) is based on the operating parameters (i.e., the range of frequency and displacement). Bingham model is used to obtain the control forces. The damping co-efficient of the model is obtained using empirical relationship between the voltage in the MR damper and input velocity from the structural members. The force acting on the structure is obtained from Morison equation using P-M spectrum. The results show that the reliable control was obtained when there was a continuous connection of multiple MR dampers with the lower levels of the structure. Independent MR dampers at different levels provided control within a range, while the MR dampers placed at alternate positions gave very high control.

Electromagnetic Design and Performance Evaluation of an MR valve (MR 밸브의 전자기적 설계와 성능 평가)

  • Kim, Ki-Han;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.968-973
    • /
    • 2007
  • This paper presents an electromagnetic design for the magneto-rheological fluid valve. The MR valve can control high-level fluid power without moving parts, due to the apparent viscosity controllability of the MR fluid in magnetic fields. In order to improve the static characteristic of the MR valve, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Then, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross sectional area through which the flux passes. Two MR valves, one is a conventional type valve and the other is the proposed one, were fabricated and performance evaluation is experimentally achieved through the comparison study using by-pass damper system.

  • PDF

Electromagnetic Design Methodology for MR Fluid Actuator (MR 유체 작동기의 전자기적 설계 방법)

  • Nam Yun-Joo;Moon Young-Jin;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF