• 제목/요약/키워드: MR(Magneto-rheological)

검색결과 210건 처리시간 0.024초

MR유체 스풀을 이용한 온-오프 밸브의 PWM제어 (PWM Control of On-Off Valves using MR Fluid Spool)

  • 양택주;배형섭;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1709-1712
    • /
    • 2003
  • Almost the on-off type solenoid valve is used to hydraulic system. It has a strong point that concerned about rapid response, electric and hydraulic characteristic at the same time. In this paper we produced the new type spool using the MR fluid different from the others. Also we controlled a cylinder position through PWM method. And using the AMESim software, We compared our new type spool valve with existed one from data of simulation and experiment.

  • PDF

자기유변유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어 (Semi-Active Control of Wind-Induced Vibration of Tall Building Using Magneto-Rheological Dampers)

  • 윤정방;구자인;김상범;전준보
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.72-77
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 ASCE benchmark 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩 내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다, 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유상한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 제어 시스템임을 확인할 수 있었다.

  • PDF

MR댐퍼를 장착한 SUV의 조향으로 인한 롤 특성 평가 (Roll Characteristics Evaluation due to the Steering of a SUV with MR Dampers)

  • 강인필;백운경
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2009
  • This study is about roll characteristics evaluation to show the advantage of using MR(magneto-rheological) dampers for steering of a SUV(sports utility vehicle). Roll characteristics is very important to observe the roll-propensity of the SUV. ADAMS/Car program was used to simulate the basic steering motion, using 63 D.O.F. vehicle model. Sky-Hook and Ground-Hook control algorithms were used as a semi-active suspension system controller. The roll characteristics from the steering motion were compared between the simulation results from the semi-active suspension system and the passive suspension system.

  • PDF

주파수 성형 LQ제어기를 이용한 반능동식 자기유변유체 현가 시스템 (Semiactive MR Fluid Suspension System Using Frequency Shaped LQ Control)

  • 김기덕;전도영
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2274-2282
    • /
    • 2000
  • An MR(Magneto-Rheological) fluid damper is designed and applied to the semi-active suspension system of a 1/4 car model. The damping constant of the MR damper changes according to input current and the time delay of the damper is included in the system dynamics. The passive method, LQ control and Frequency shaped LQ control are compared in experiments. The advantage of the proposed frequency shaped LQ control is that the ride comfort improves in frequency range from 4 to 8Hz where human body is most sensitive and the driving safety improves around the resonance frequency of unsprung mass, 11Hz. The experiments using a 1/4 car model show the effectiveness of the algorithm.

소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템 (Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper)

  • 민경원
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.233-238
    • /
    • 2006
  • 이 논문에서는 소형 다층 구조물의 진동제어에 적용하기 위한 복합모드의 자기유변유체(MR) 감쇠기를 개발하였다. 우선, 도식적으로 전단, 유동, 복합모드 MR감쇠기의 형태를 설계조건과 함께 표현하였고, 각각의 모드에 대하여 자기장에 따른 감쇠력을 예측하기 위한 해석모델을 유도하였다. 다음으로 적당한 크기의 복합모드 MR감쇠기를 제작하고 자기장에 따른 감쇠특성을 시간영역에서 평가하였다. 마지막으로 지진하중을 받는 소형구조물에 제작된 MR감쇠기가 준능동 제어기로 제어하였을 때의 성능을 수치적으로 평가하였다.

Design and Evaluation a Multi-coil Magneto-rheological Damper for Control Vibration of Washing Machine

  • Phu, Do Xuan;Park, Joon Hee;Woo, Jae Kwan;Choi, Seung Bok
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.543-548
    • /
    • 2013
  • 이 논문은 세탁기의 진동제어를 위한 MR 댐퍼의 설계과정을 제시한다. 이 연구에서는 MR 댐퍼의 작은 크기와 함께 높은 댐핑력과 저전력을 소비하도록 설계되었다. MR 댐퍼는 전단모드를 사용하도록 제안되었고 빙햄모델을 이용하여 최설설계를 진행하였다. 이 과정에서 멀티코일이 댐핑력을 높이기 위해 적용되었고 최적화된 구조를 찾아내기 위하여 APDL을 이용하여 최적설계가 수행되었다. 이 후 최적의 수치 값들을 통해 제작하여 실험을 수행하였다. 이 때 슬라이딩모드 제어기를 적용하여 시뮬레이션과 제어실험을 모두 수행하였다. 실험의 결과로부터 MR 댐퍼가 세탁기의 진동제어를 위한 요구 댐핑력을 만족시켜줌을 확인하였다.

  • PDF

DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성 (Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE)

  • 장붕;이광희;이철희;최종명
    • Tribology and Lubricants
    • /
    • 제31권2호
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.565-595
    • /
    • 2015
  • In recent years, high-rise buildings received a renewed interest as a means by which technical and economic advantages can be achieved, especially in areas of high population density. Taller and taller buildings are being built worldwide. These types of buildings present an asset and typically are built not to fail under wind loadings. The increase in a building's height results in increased flexibility, which can lead to significant vibrations, especially at top floors. Such oscillations can magnify the overall loads and can be annoying to the top floors' occupants. This paper shows that increased stiffness in high-rise buildings may not be a feasible solution and may not be used for the design for comfort and serviceability. High-rise buildings are unique, and a vibration control system for a certain building may not be suitable for another. Even for the same building, its behavior in the two lateral directions can be different. For this reason, the current study addresses the application of hybrid tuned mass and magneto-rheological (TM/MR) dampers that can work for such types of buildings. The proposed control scheme shows its effectiveness in reducing floors' accelerations for both comfort and serviceability concerns. Also, a dissipative analysis carried out shows that the MR dampers are working within the possible range of optimum performance. In addition, the design loads are dramatically reduced, creating more resilient and sustainable buildings. The purpose of this paper is to stimulate, shape, and communicate ideas for emerging control technologies that are essential for solving wind related problems in high-rise buildings, with the objective to build the more resilient and sustainable infrastructure and to optimally retrofit existing structures.

Retrofitting of a weaker building by coupling it to an adjacent stronger building using MR dampers

  • Abdeddaim, Mahdi;Ounis, Abdelhafid;Shrimali, Mahendra K.;Datta, Tushar K.
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.197-208
    • /
    • 2017
  • Among various retrofitting strategies, use of semi-active control for retrofitting a building structure has gained momentum in recent years. One of the techniques for such retrofitting is to connect a weaker building to an adjacent stronger building by semi-active devices, so that performances of a weaker building are significantly improved for seismic forces. In this paper, a ten storey weaker building is connected to an adjacent stronger building using magneto-rheological (MR) dampers, for primarily improving the performance of the weaker building in terms of displacement, drift and base shear. For this, a fuzzy logic controller is specifically developed by fuzzyfying the responses of the coupled system. The performance of the control strategy is compared with the passive-on and passive-off controls. Pounding Mitigation between the two buildings is also investigated using all three control strategies. The results show that there exists a fundamental frequency ratio between the two buildings for which maximum control of the weaker building response takes place with no penalty on the stronger building. There exists also a fundamental frequency ratio where control of the weaker building response is achieved at the expense of the amplification of the stronger building. However, coupling strategy always improves the possibility of pounding mitigation.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.