• Title/Summary/Keyword: MPS II

Search Result 49, Processing Time 0.023 seconds

Hematopoietic Cell Transplantation in Patients with Mucopolysaccharidosis Type II

  • Song, Ari
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked lysosomal storage disorder caused by deficiency of the enzyme iduronate-2-sulfatase, leading to the accumulation of glycosaminoglycans (GAGs), which affects multiple organs and systems. Current treatments for MPS II include enzyme replacement therapy (ERT) and hematopoietic cell transplantation (HCT) to reduce the accumulation of GAGs. HCT has the potential advantage that donor-derived enzyme-competent cells can provide a continuous secreting source of the enzyme. However, HCT as a treatment for MPS II remains controversial because its effectiveness is unclear, particularly in terms of neurological symptoms. To date, several clinical experiences with HCT in MPS II have been reported. In this paper, we review post-HCT outcomes in the previously published literature and discuss the effects of HCT on each of the clinical signs and symptoms of MPS II.

Enzyme Replacement Therapy in Patients Who Have Mucopolysaccharidosis and Are younger than 5 years old (5세 미만 뮤코다당체침착증 환자에서의 효소 대체 요법)

  • Park, Seong-Won;Son, Yeong-Bae;Kim, Se-Hwa;Jo, Seong-Yun;Ji, Seon-Tae;Jin, Dong-Gyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Enzyme replacement of therapy (ERT) is one of the most promising therapeutic strategies for the treatment of lysosomal storage disorders. ERT is available in three types of Mucopolysaccharidosis (MPS): for MPS I (Aludrazyme$^{(R)}$), MPS II (Elaprase$^{(R)}$) and MPS VI (Naglazyme$^{(R)}$) patients who are over 5 years old. But recently, early diagnosis can be done by expert clinicians and even in prenatal case. We describe the case of ERT under 5 years old MPS patients. Up to June, 2010 in Samsung Medical Center, there are 6patients who were diagnosed as MPS and started ERT under 5 years old. 3 patients were MPS I, 3 patients were MPS II. 2 patient who was diagnosed as MPS I was female and others were male. Their age at diagnosis were 4 to 37month-old (4, 13, 16, 25, 27, 37 month-old) and they are now 9 to 60 month-old (9, 39, 32, 81, 60 month-old). The youngest patient was started ERT at 4 month-old and others were started at their 13 to 49 month-old (13, 29, 27, 28, 49 month-old). First manifested symptoms of patients were macrocephaly, kyphosis and coarse face appearance. Especially, in 2 of them, one was MPS I and the other was MPS II had elder brother with same disease. And the youngest one was diagnosed by the iduronate-2-sulfatase (IDS) gene analysis from chorionic villi sampling. His mother knew that she was a heterozygous carrier of IDS gene mutation because her younger brother died from MPS II. All of them confirmed as MPS by the enzyme assay in leukocytes and fibroblast skin culture. We started ERT with ${\alpha}$-L-iduronidase(Aldurazyme$^{(R)}$) to MPS I and did recombinant human iduronate-2-sulfatase (Elaprase$^{(R)}$) to MPS II patients as recommended dose as over 5 years old. But for MPS II patient who was 4 month old, we started ERT by recombinant human IDS (Elaprase$^{(R)}$) with reduced dose 0.1 mg/kg and increased dose every 2 weeks by 0.1mg/kg up to 0.5mg/kg IV infusion. During ERT, all patients had no adverse effects and the excretion of GAGs were decreased. We have evaluated other clinical symptoms such as liver/ spleen volume, heart function and neurologic evaluation. We describe a successful ERT to MPS I and MPS II patient under 5 years old without any adverse event. It indicates that ERT in young children are well tolerated and that it has several effects which may confer clinical benefits with long-term therapy.

  • PDF

Birth of a healthy baby after preimplantation genetic diagnosis in a carrier of mucopolysaccharidosis type II: The first case in Korea

  • Ko, Duck Sung;Lee, Sun-Hee;Park, Chan Woo;Lim, Chun Kyu
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.206-210
    • /
    • 2019
  • Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive lysosomal storage disease caused by mutation of the iduronate-2-sulfatase gene. The mutation results in iduronate-2-sulfatase deficiency, which causes the progressive accumulation of heparan sulfate and dermatan sulfate in cellular lysosomes. The phenotype, age of onset, and symptoms of MPS II vary; accordingly, the disease can be classified into either the early-onset type or the late-onset type, depending on the age of onset and the severity of the symptoms. In patients with severe MPS II, symptoms typically first appear between 2 and 5 years of age. Patients with severe MPS II usually die in the second decade of life although some patients with less severe disease have survived into their fifth or sixth decade. Here, we report the establishment of a preimplantation genetic diagnosis (PGD) strategy using multiplex nested polymerase chain reaction, direct sequencing, and linkage analysis. Unaffected embryos were selected via the diagnosis of a single blastomere, and a healthy boy was delivered by a female carrier of MPS II. This is the first successful application of PGD in a patient with MPS II in Korea.

Diagnosis and Management of Patients with Mucopolysaccharidoses in Malaysia

  • Ngu, Lock-Hock
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.11-13
    • /
    • 2018
  • In Malaysia, diagnosis and treatment of patients with mucopolysaccharidoses (MPS) is mainly localized at Hospital Kuala Lumpur, which is the national referral center for rare diseases. To date there are 83 patients diagnosed with MPS in our center, with MPS II being the commonest. The Malaysian National Medicines Policy second edition has a specific section on the orphan drugs which includes recombinant human enzyme for enzyme replacement therapy (ERT) in MPS. So far, National Pharmaceutical Regulatory Agency Malaysia has approved recombinant human enzyme for MPS types I (Loranidase), II (idursulfase), IVA (elosulfase alfa), and VI (Galsufase). Access to Idursulfase beta (another recombinant human enzyme for MPS II) and vestronidase alfa-vjbk (MPS VII) required special authorization on named patient basic. Currently there are 25 patients receiving ERT, 70% of the funding are from Ministry of Health (MOH), the remaining 30% are from various charitable funds and humanitarian programs. Thirteen newly diagnosed patients have to queue for an additional fund. Four patients have been treated with Hematopoietic stem cell transplant. MOH has also published guidelines regarding the patient selection criteria for ERT and treatment monitoring schedule.

Cochlear Implantation via the Transmeatal Approach in an Adolescent with Hunter Syndrome-Type II Mucopolysaccharidosis

  • Kim, Hantai;An, Jun Young;Choo, Oak-Sung;Jang, Jeong Hun;Park, Hun Yi;Choung, Yun-Hoon
    • Korean Journal of Audiology
    • /
    • v.25 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Type II mucopolysaccharidosis (MPS II) commonly known as Hunter syndrome, is a rare X-linked lysosomal storage disorder caused by iduronate-2-sulfatase deficiency, which in turn causes otorhinolaryngological manifestations, including sensorineural hearing loss (SNHL). Previously, the median survival age of patients with MPS was approximately 13.4 years. However, in the era of enzyme replacement therapy and other multidisciplinary care modalities, the life expectancy has increased. Herein, we report a rare case of an adolescent with MPS II who underwent SNHL treatment with cochlear implantation (CI). Based on unexpected findings of mastoid emissary veins and overgrowth of the vessels around the temporal bone, CI was performed using the transmeatal approach instead of the conventional transmastoid method, to avoid damage to the vessels. The average hearing threshold after CI was 35 dB and no surgical complications were encountered. Adolescent MPS II may present vessel abnormalities, which can reduce the success rate of surgery. In patients with MPS II with SNHL, CI should be performed under careful monitoring of vessel overgrowth. Moreover, with regard to feasibility of CI in adolescent patients with MPS II with SNHL, surgical techniques such as the transmeatal approach should be selected based on adequate assessment of the case.

Cochlear Implantation via the Transmeatal Approach in an Adolescent with Hunter Syndrome-Type II Mucopolysaccharidosis

  • Kim, Hantai;An, Jun Young;Choo, Oak-Sung;Jang, Jeong Hun;Park, Hun Yi;Choung, Yun-Hoon
    • Journal of Audiology & Otology
    • /
    • v.25 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Type II mucopolysaccharidosis (MPS II) commonly known as Hunter syndrome, is a rare X-linked lysosomal storage disorder caused by iduronate-2-sulfatase deficiency, which in turn causes otorhinolaryngological manifestations, including sensorineural hearing loss (SNHL). Previously, the median survival age of patients with MPS was approximately 13.4 years. However, in the era of enzyme replacement therapy and other multidisciplinary care modalities, the life expectancy has increased. Herein, we report a rare case of an adolescent with MPS II who underwent SNHL treatment with cochlear implantation (CI). Based on unexpected findings of mastoid emissary veins and overgrowth of the vessels around the temporal bone, CI was performed using the transmeatal approach instead of the conventional transmastoid method, to avoid damage to the vessels. The average hearing threshold after CI was 35 dB and no surgical complications were encountered. Adolescent MPS II may present vessel abnormalities, which can reduce the success rate of surgery. In patients with MPS II with SNHL, CI should be performed under careful monitoring of vessel overgrowth. Moreover, with regard to feasibility of CI in adolescent patients with MPS II with SNHL, surgical techniques such as the transmeatal approach should be selected based on adequate assessment of the case.

Joint Problems in Patients with Mucopolysaccharidosis Type II

  • Kim, Min-Sun;Kim, Jiyeon;Noh, Eu Seon;Kim, Chiwoo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.17-21
    • /
    • 2021
  • Hunter syndrome or mucopolysaccharidosis type II (MPS-II) (OMIM 309900) is a rare lysosomal storage disorder caused by deficiency in the activity of the enzyme iduronate-2-sulfatase. This enzyme is responsible for the catabolism of the following two different glycosaminoglycans (GAGs): dermatan sulfate and heparan sulfate. The lysosomal accumulation of these GAG molecules results in cell, tissue, and organ dysfunction. Patients can be broadly classified as having one of the following two forms of MPS II: a severe form and an attenuated form. In the severe form of the disease, signs and symptoms (including neurological impairment) develop in early childhood, whereas in the attenuated form, signs and symptoms develop in adolescence or early adulthood, and patients do not experience significant cognitive impairment. The involvement of the skeletal-muscle system is because of essential accumulated GAGs in joints and connective tissue. MPS II has many clinical features and includes two recognized clinical entities (mild and severe) that represent two ends of a wide spectrum of clinical severities. However, enzyme replacement therapy is likely to have only a limited impact on bone and joint disease based on the results of MPS II studies. The aim of this study was to review the involvement of joints in MPS II.

Growth hormone treatment for children with mucopolysaccharidosis I or II

  • Minji Im;Chiwoo Kim;Juyoung Sung;Insung Kim;Ji-Hoon Hwang;Min-Sun Kim;Sung Yoon Cho
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.60-69
    • /
    • 2023
  • Purpose: Despite enzyme replacement therapy (ERT) and/or allogeneic hematopoietic stem cell transplantation, individuals with mucopolysaccharidosis (MPS) I or II often experience significant growth deficiencies. This study aimed to assess the safety and efficacy of recombinant human growth hormone (hGH) treatment in children diagnosed with MPS I or II. Materials and Methods: A total of nine pediatric patients-four with MPS I and five with MPS II-underwent treatment with ERT and hGH at Samsung Medical Center. Results: The mean hGH dose administered was 0.26±0.03 mg/kg/week. In the MPS I group, three patients showed an increase in height Z-score from -4.09±0.83 to -3.68±0.43 after 1 year of hGH treatment, and to -3.10±0.72 by the end of the hGH regimen. In the MPS II group, while the height Z-score of four patients decreased according to standard growth charts, it improved from 1.61±1.79 to 2.71±1.68 based on the disease-specific growth chart through hGH treatment. Two patients discontinued hGH treatment due to lack of efficacy after 22 and 6 months each of treatment, respectively. No new-onset neurological symptoms or necessity for prosthetic or orthopedic surgery were reported during hGH treatment. Conclusion: This study provides insights into the impact of hGH on MPS patients, demonstrating its potential to reverse growth deceleration in some cases. Further research is needed to explore the long-term effects of hGH on changes in body composition, muscle strength, and bone health in this population.

Keratanase II Digestion Accompanied with a Liquid Chromatography/Tandem Mass Spectrometry for Urinary Keratan Sulfate Quantitative Analysis

  • Chuang, Chih-Kuang;Lin, Hsiang-Yu;Wang, Tuen-Jen;Huang, Sung-Fa;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: Mucopolysaccharidosis IV (MPS IV) is a disease characterized by deficient activity of N-acetylgalactosamine-6-sulfatase (GALNS) causing excessive lysosomal storage of keratan sulfate (KS). The identification of the relevant disaccharide units of KS after keratanase II digestion followed by liquid chromatography/tandem mass spectrometry detection (LC-MS/MS) is validated and applicable for the preliminary diagnosis of MPS IV. Methods: A total of 67 urine samples were collected and analyzed from 11 MPS IV patients comprising 10 MPS IVA and one MPS IVB patients, and 56 normal controls. Urinary glycosaminoglycan was first precipitated by the Alcian blue method followed by a digestion of keratanase II. The protonated species of the digested disaccharide products were detected by using multiple reaction monitoring experiment. Results: One particular disaccharide of KS was selected. The transition mass-to-charge (m/z) of the parent ion and its daughter ion after collision was $462.0{\rightarrow}97.0$, whereas the chondrosine used as an internal standard in this assay was m/z $353.9{\rightarrow}73.0$. The results corresponded well with the two-dimensional electrophoresis method. The quantities of urinary KS were significantly raised in confirmed MPS IV patients when comparing with those of normal controls ($170.2{\pm}81.1$ vs. $4.06{\pm}1.92{\mu}g/mL$). Conclusion: The LC-MS/MS method for MPS IVA determination is specific, sensitive, validated, and applicable for urinary KS quantification. This method can be used not only as a first-line biochemistry examination of MPS IVA, but also as an outcome survey after enzyme replacement therapy.

Newborn Screening for Lysosomal Storage Diseases in Taiwan

  • Lin, Hsiang-Yu;Chuang, Chih-Kuang;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Lysosomal storage diseases (LSDs) are a group of rare inherited metabolic disorders caused by the deficiency of specific lysosomal enzymes and subsequent accumulation of substrates. Enzyme deficiency leads to progressive intra-lysosomal accumulation of the incompletely degraded substances, which cause dysfunction and destruction of the cell and eventually multiple organ damage. Patients have a broad spectrum of clinical phenotypes which are generally not specific for some LSDs, leading to missed or delayed diagnosis. Due to the availability of treatment including enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation for some LSDs, early diagnosis is important. ERT products have been approved with optimal outcomes for some LSDs in the recent decades, including Gaucher, Fabry, mucopolysaccharidosis (MPS) I, Pompe, MPS VI, MPS II, and MPS IVA diseases. ERT can stabilize the clinical condition, prevent disease progression, and improve the long-term outcome of these diseases, especially if started prior to irreversible organ damage. Based on the availability of therapy and suitable screening methods in the recent years, some LSDs, including Pompe, Fabry, Gaucher, MPS I, MPS II, and MPS VI diseases have been incorporated into nationwide newborn screening panels in Taiwan.