• Title/Summary/Keyword: MPPG

Search Result 2, Processing Time 0.017 seconds

A 32${\times}$32-b Multiplier Using a New Method to Reduce a Compression Level of Partial Products (부분곱 압축단을 줄인 32${\times}$32 비트 곱셈기)

  • 홍상민;김병민;정인호;조태원
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.447-458
    • /
    • 2003
  • A high speed multiplier is essential basic building block for digital signal processors today. Typically iterative algorithms in Signal processing applications are realized which need a large number of multiply, add and accumulate operations. This paper describes a macro block of a parallel structured multiplier which has adopted a 32$\times$32-b regularly structured tree (RST). To improve the speed of the tree part, modified partial product generation method has been devised at architecture level. This reduces the 4 levels of compression stage to 3 levels, and propagation delay in Wallace tree structure by utilizing 4-2 compressor as well. Furthermore, this enables tree part to be combined with four modular block to construct a CSA tree (carry save adder tree). Therefore, combined with four modular block to construct a CSA tree (carry save adder tree). Therefore, multiplier architecture can be regularly laid out with same modules composed of Booth selectors, compressors and Modified Partial Product Generators (MPPG). At the circuit level new Booth selector with less transistors and encoder are proposed. The reduction in the number of transistors in Booth selector has a greater impact on the total transistor count. The transistor count of designed selector is 9 using PTL(Pass Transistor Logic). This reduces the transistor count by 50% as compared with that of the conventional one. The designed multiplier in 0.25${\mu}{\textrm}{m}$ technology, 2.5V, 1-poly and 5-metal CMOS process is simulated by Hspice and Epic. Delay is 4.2㎱ and average power consumes 1.81㎽/MHz. This result is far better than conventional multiplier with equal or better than the best one published.

Biological Effects of Static Magnetic Fields and ELF-Electromagnetic Field on Microcirculation in Animals

  • Ohkubo, Chiyoji;Okano, Hidyuki;Xu, Shenzhi;Gmitrov, Jraj
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 1999.07a
    • /
    • pp.117-129
    • /
    • 1999
  • Acute effects of locally applied of static magnetic field (SMF) and extremely low frequency electromagnetic field(ELF-EMF) to the cutaneous tissue within a rabbit ear chamber (REC)were evaluated under conscious conditions. Rabbits with the REC were subjected to intravital microscopical investigation by use of microphotoelectric plethysmography(MPPG). There was no dose-response relationship between the extent of vasomotion changes and frequencies(0,20,50, 100Hz)or power levels (1, 5, 10, 25, 50, 100, 200 mT). Under low vascular tone the both fields induce vasodilatation. The effects of SMF (1 mT) on the cutaneous microcirculatory system induced the vasodilatation with enhanced vasomotion under nor-adrenaline-induced high vascular tone as well as the vasoconstriction with reduced vasomotion under acetylcholine-induced low vascular tone. This suggests that the SMF can modulate vascular tone due to the modification of vasomotion biphasically in the cutaneous tissue.

  • PDF