• Title/Summary/Keyword: MPP+

Search Result 287, Processing Time 0.043 seconds

Improving the performance of PV system using the N-IC MPPT methods (N-IC MPPT방법을 이용한 태양광 발전시스템의 성능개선)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.958-959
    • /
    • 2015
  • This paper proposes adaptive incremental conductance(A-IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. Conventional Perturbation & Observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, this paper proposes N-IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve tracking speed and accuracy, when operating point is far from maximum power point(MPP), step size uses maximum value and when operating point is near from MPP, step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional IC MPPT algorithm.

  • PDF

Characteristics of Al Doped ZnO Thin Film by Modulated Pulsed Power Magnetron Sputtering

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.430-430
    • /
    • 2012
  • Modulated pulsed power (MPP) 스퍼터링은 펄스 전압 shape, amplitude, duration의 modulation을 통해 증착율 손실을 극복하는 고출력 펄스 마그네트론 스퍼터링의 한 종류이다. Micro second 범위에서 on/off 시간을 다중 세트 형태로 자유롭게 프로그램 할 수 있어서 아킹 없이 고전류 영역의 마그네트론 동작을 할 수 있으므로, 고주파 유도 결합 플라즈마원이나 마이크로웨이브 투입 등의 부가적인 플라즈마 없이도 스퍼터링 재료의 이온화 정도를 획기적으로 높일 수 있는 장점을 가지고 있다. 본 연구에서는 $2{\times}1{\times}0.2$의 sputtering system에서 기판 캐리어를 이용해서 $400{\times}400mm$ 기판을 $272{\times}500mm$ 크기의 AZO target (Al 2 wt%)이 설치되어 있는 moving magnet cathode (MMC)을 이용하여 MPP로 증착했다. 두 종류의 micro pulse set을 하나의 macro pulse에 사용함으로서 weakly ionized plasma와 strongly ionized plasma를 만들 수 있다. 다양한 micro pulse set을 이용하여 평균 전력 2 kW에서 peak 전력을 4 kW에서 45 kW까지 상승 시킬 수 있으며, 이 때 타겟-기판 거리 80 mm에서 이온전류밀도는 $5mA/cm^2$에서 $20mA/cm^2$까지 상승했다. MPP는 같은 평균 전력에서 repetition frequency가 증가할 때, 증착 속도가 증가했으며, 같은 repetition frequency에서 macro pulse length가 증가할 때도, 증착 속도가 증가했다. 최적화된 marco, micro pulse set에서 증착 속도는 평균 전력 2 kW에서 110 nm/min이었고, 700 nm의 박막에서 비저항은 $1-2{\times}10^{-3}ohm{\cdot}cm$였다. 표면거칠기 Rrms는 약 3 nm였고, 400-700 nm 영역의 평균 투과도는 72-76%였다.

  • PDF

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.

Modulated Pulse Power Sputtering Technology for Deposition of Al Doped ZnO Thin Film (Al doped ZnO 박막 증착을 위한 모듈레이티드 펄스 스퍼터링)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Modulated Pulse Power (MPP) magnetron sputtering is a new high-power pulsed magnetron sputtering (HPPMS) technology which overcomes the low deposition rate problem by modulating the pulse voltage shape, amplitude, and the duration. Highly ionized magnetron sputtering can be performed without arcing because it can be controlled as multiple steps of micro pulses within one overall pulse period in the range of 500-3,000 ${\mu}s$. In this study, the various waveforms of discharge voltage and current for micro pulse sets of MPP were investigated to find the possibility of controlling the strongly ionized plasma mode. Enhanced ionization of the sputtered metal atoms was obtained by OES. Large grained columnar structure can be grown by the strongly ionized plasma mode in the AZO deposition using MPP. In the most highly ionized deposition condition, the preferred orientation of (002) plane decreased, and the resistivity, therefore, increased by the plasma damage.

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Experimental performance characteristics of 1 kW commercial PEM fuel cell

  • Shubhaditya Kumar;Pranshu Shrivastava;Anil Kumar
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.203-211
    • /
    • 2022
  • The aim of this paper is to analyze the performance of commercial fuel cell (rated capacity 1000W) with the help of resistive load and output power variation with change in H2 flow rate and calculate the maximum power point (MPP) of the proton exchange membrane (PEM) while changing AC and DC load respectively. The factors influencing the output power of a fuel cell are hydrogen flow rate, cell temperature, and membrane water content. The results show that when the H2 flow rate is changed from 11, 13, and 15 Lpm, MPP is increased from lower to higher flow rate. The power of the fuel cell is increased at the rate of 29% by increasing the flow rate from 11 to 15 lpm. This study will allow small-scale industries and residential buildings (in remote or inaccessible areas) to characterize the performance of PEMFC. Furthermore, fuel cell helps in reducing emission in the environment compared to fossil fuels. Also, fuel cells are ecofriendly as well as cost effective and can be the best alternative way to convert energy.

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers

  • Foiklang, S.;Wanapat, M.;Norrapoke, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1416-1423
    • /
    • 2016
  • This study was designed to investigate the effect of grape pomace powder (GPP), mangosteen peel powder (MPP) and monensin on feed intake, nutrients digestibility, microorganisms, rumen fermentation characteristic, microbial protein synthesis and nitrogen balance in dairy steers. Four, rumen fistulated dairy steers with initial body weight (BW) of $220{\pm}15kg$ were randomly assigned according to a $4{\times}4$ Latin square design to receive four treatments. The treatments were as follows: T1 = control, T2 = supplementation with monensin at 33 mg/kg diet, T3 = supplementation with GPP at 2% of dry matter intake, and T4 = supplementation with MPP at 30 g/kg diet. The steers were offered the concentrate diet at 0.2% BW and 3% urea treated rice straw (UTRS) was fed ad libitum. It was found that GPP supplemented group had higher UTRS intake and nutrient digestibility in terms of neutral detergent fiber and acid detergent fiber than those in control group (p<0.05). Ammonia nitrogen ($NH_3-N$) and blood urea-nitrogen concentration were higher in monensin, GPP and MPP supplemented groups (p<0.05). Total volatile fatty acids and propionate in the GPP group were higher than those in the control group (p<0.05) while acetate concentration, and acetate to propionate ratio were decreased (p<0.01) when steers were supplemented with GPP, monensin, and MPP, respectively. Moreover, protozoal populations in GPP, MPP, and monensin supplementation were significantly lower than those in the control group (p<0.05), while cellulolytic bacterial population was significantly higher in the control group (p<0.05). Nitrogen retention, microbial crude protein and efficiency of microbial nitrogen synthesis were found significantly higher in steers that received GPP (p<0.05). Based on this study it could be concluded that the GPP has potential as an alternative feed supplement in concentrate diets which can result in improved rumen fermentation efficiency, digestibility and microbial protein synthesis in steers fed on treated rice straw.

Increased procalcitonin level is a risk factor for prolonged fever in children with Mycoplasma pneumonia

  • Jeong, Ji Eun;Soh, Ji Eun;Kwak, Ji Hee;Jung, Hye Lim;Shim, Jae Won;Kim, Deok Soo;Park, Moon Soo;Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.8
    • /
    • pp.258-263
    • /
    • 2018
  • Purpose: Macrolide-resistant Mycoplasma pneumoniae pneumonia (MPP) is characterized by prolonged fever and radiological progression despite macrolide treatment. Few studies have examined serum procalcitonin (PCT) level in children with MPP. We aimed to investigate the association of acute inflammation markers including PCT with clinical parameters in children with MPP. Methods: A total of 147 children were recruited. The diagnosis of MPP relied on serial measurement of IgM antibody against mycoplasma and/or polymerase chain reaction. We evaluated the relationships between C-reactive protein (CRP), PCT, and lactate dehydrogenase (LDH) levels and white blood cell (WBC) counts, and clinical severity of the disease. We used multivariate logistic regression analysis to estimate the odds ratio for prolonged fever (>3 days after admission) and hospital stay (> 6 days), comparing quintiles 2-5 of the PCT levels with the lowest quintile. Results: The serum PCT and CRP levels were higher in children with fever and hospital stay than in those with fever lasting ${\leq}3days$ after admission and hospital stay ${\leq}6days$. CRP level was higher in segmental/lobar pneumonia than in bronchopneumonia. The LDH level and WBC counts were higher in children with fever lasting for >3 days before compared to those with fever lasting for ${\leq}3days$. The highest quintile of PCT levels was associated with a significantly higher risk of prolonged fever and/or hospital stay than the lowest quintile. Conclusion: Serum PCT and CRP levels on admission day were associated with persistent fever and longer hospitalization in children with MPP.

Quality Changes of Fresh-Cut Tumeric by Packaging Methods during Storage (포장방법에 따른 세절 생울금의 저장 중 품질 변화)

  • Kim, Dong-Hoo;Han, Jin-Soo;Woo, In-Bong;Jung, Jun-Jae;Park, Si-Woo;Heo, Kyung-Chel;Ha, Ju-hyeung;Yoon, Chan-Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.151-162
    • /
    • 2017
  • The purpose of this study was to investigate the quality change of fresh-cut tumeric (Curcuma Longa Linne) according to packaging method during storage time. The fresh-cut tumeric were packaged in three different methods : degassing valve packaging (DVP), $CO_2$ gas absorber packaging (CAP) and micro-perforated packaging (MPP). After the samples were packaged, they were stored for 15 days at 4 and $23^{\circ}C$ respectively. The following parameters were observed to indicate the quality changes of the samples: weight loss, CIE $L^*a^*b^*$ colour difference, variation of gas composition inside the package, curcumin contents and changes in hardness of fresh-cut tumeric. DVP did not effectively release $CO_2$ gas to the outside. MPP was suitable to release $CO_2$ gas. However, MPP showed very fast browning and erosion, because a large amount of oxygen was introduced through the perforated hole on the film. CAP was most effective packaging method to inhibit browning, to prevent expansion of the packaging by $CO_2$ gas and to minimize weight loss of fresh-cut tumeric.