• 제목/요약/키워드: MPI(Message-Passing Interface)

Search Result 115, Processing Time 0.029 seconds

Hyper-resolution 1D-2D coupled urban inundation modelling using LiDAR and hybrid parallelization (하이브리드 병렬화 기반 초고해상도 1D-2D 도시침수 모의)

  • Lee, Seung-soo;Noh, Seong Jin;Lee, Junhak;Kawike, Kenji;Seo, Dong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.7-7
    • /
    • 2018
  • 1차원 하수관로 해석 모형과 2차원 지표면 유출 해석 모형을 연계한 1D-2D 결합 도시침수 모델은 도시지역의 유출 현상과 침수 모의에 널리 이용되고 있다. 그러나 도시 지역의 복잡한 지형이 지표면 유출 흐름에 미치는 영향을 보다 자세히 파악하기 위해서는 보다 높은 해상도의 지형자료를 활용한 모의가 필요하다. 본 연구에서는 도시침수 해석을 위한 1D-2D 결합 하이브리드(Hybrid) 병렬화 코드(H12)를 개발하여 넓은 도시 유역에 대해서 고해상도 지형자료를 활용한 모의가 유역단위로 가능하도록 하였다. H12는 Open Multi-Processing(OpenMP)와 Message Passing Interface(MPI) 병렬 계산을 동시에 수행하여 매우 넓은 지역에 대해서도 도로의 형태를 확인 할 수 있는 수준의 고해상도 침수 해석 모의가 가능하다. 또한 도시지역의 복잡한 지형을 자세히 재현하고 계산의 효율을 높이기 위하여 격자세분화 기법이 적용되었다. H12의 적용성을 평가하기 위하여 미국 텍사스 알링턴 지역의 Johnson Creek 유역(${\sim}40km^2$)유역에 대한 시범 모의를 수행하였으며 도시유역의 지형을 표현하기 위하여 1m 해상도의 LiDAR자료를 사용하여 침수발생시 보다 자세한 유출수의 흐름을 해석할 수 있도록 하였다. 모의 결과 하이브리드 병렬 계산은 순차적 계산에 비하여 최고 79배 이상 빠른 계산속도 효율 향상을 보여주었으며, OpenMP나 MPI를 단독으로 사용하는 것에 비하여 더욱 효율적인 계산속도 효율 향상을 보여주었다.

  • PDF

Development of Network based Gravity and Magnetic data Processing System (네트워크에 기반한 중력.자력 자료의 처리기술 개발 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Oh, Seok-Hoon;Chung, Ho-Joon;Rim, Hyoung-Rae
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.235-244
    • /
    • 2000
  • We studied basic ideas of a network based Gravity/Magnetic data processing server/client system which provides functions of data processing, forward modeling, inversion and data process on Data Base. This Java technology was used to provide facilities, socket communication and JDBC(Java Database Connectivity) technology to produce an effective and practical client application. The server computers are linked by network to process the MPI parallelized computing. This can provide useful devices of the geophysical process and modeling that usually require massive computing performance and time. Since this system can be accessed by lots of users, it can provides the consistent and confident results through the verified processing programs. This system also makes it possible to get results and outputs through internet when their local machines are connected to the network. It can help many users who want to omit the jobs of system administration and to process data during their field works.

  • PDF

Development of Network Based MT Data Processing System (네트워크에 기반한 MT자료의 처리기술 개발 연구)

  • Lee Heuisoon;Kwon Byung-Doo;Chung Hojoon;Oh Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2000
  • The server/client systems using the web protocol and distribution computing environment by network was applied to the MT data processing based on the Java technology. Using this network based system, users can get consistent and stable results because the system has standard analysing methods and has been tested from many users through the internet. Users can check the MT data processing at any time and get results during exploration to reduce the exploration time and money. The pure/enterprised Java technology provides facilities to develop the network based MT data processing system. Web based socket communication and RMI technology are tested respectively to produce the effective and practical client application. Intrinsically, the interpretation of MT data performing the inversion and data process requires heavy computational ability. Therefore we adopt the MPI parallel processing technique to fit the desire of in situ users and expect the effectiveness for the control and upgrade of programing codes.

  • PDF

Analysis of Cooling Air Current and Efficiency of Air Conditioning in the Underground Subway Station with Screen-Door Opening and Closing (도시철도 역사 스크린 도어 개폐에 따른 냉방 기류 해석 및 효율 비교 분석)

  • Jang, Yong-Jun;Ryu, Ji-Min;Jung, Ho-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.328-335
    • /
    • 2014
  • Numerical prediction methods were applied to investigate the turbulent air currents and air-conditioning efficiency in an underground subway station, and the results compared to experimental data. The Shin-gumho Station($8^{th}$ floor underground and 43.6m in depth) in Seoul was selected for the analysis. The entire station was covered for simulation and the ventilation mode was ordinary. The ventilation diffusers were modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes in the platform. Cooling air of $47,316m^3/h$ was supplied and the returned air of $33,980m^3/h$ is exhausted in the lobby and the cooling air of $33,968m^3/h$ is supplied and the returned air of $76,190m^3/h$ was exhausted in the platform which is the same as the experimental data. The cases of the screen-door-closed and open were respectively investigated. A total of 7.5million grids were generated and the whole domain divided into 22 blocks for MPI efficiency of calculation. Large eddy simulation (LES) was applied to solve the momentum and energy equation.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.

Development of Mongolian Numerical Weather Prediction System (MNWPS) Based on Cluster System (클러스터 기반의 몽골기상청 수치예보시스템 개발)

  • Lee, Yong Hee;Chang, Dong-Eon;Cho, Chun-Ho;Ahn, Kwang-Deuk;Chung, Hyo-Sang;Gomboluudev, P.
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2005
  • Today, the outreach of National Meteorological Service such as PC cluster based Numerical Weather Prediction (NWP) technique is vigorous in the world wide. In this regard, WMO (World Meteorological Organization) asked KMA (Korea Meteorological Administration) to formulate a regional project, which cover most of RA II members, using similar technical system with KMA's. In that sense, Meteorological Research Institute (METRI) in KMA developed Mongolian NWP System (MNWPS) based on PC cluster and transferred the technology to Weather Service Center in Mongolia. The hybrid parallel algorithm and channel bonding technique were adopted to cut cost and showed 41% faster performance than single MPI (Message Passing Interface) approach. The cluster technique of Beowulf type was also adopted for convenient management and saving resources. The Linux based free operating system provide very cost effective solution for operating multi-nodes. Additionally, the GNU software provide many tools, utilities and applications for construction and management of a cluster. A flash flood event happened in Mongolia (2 September 2003) was selected for test run, and MNWPS successfully simulated the event with initial and boundary condition from Global Data Assimilation and Prediction System (GDAPS) of KMA. Now, the cluster based NWP System in Mongolia has been operated for local prediction around the region and provided various auxiliary charts.

A Dynamic Work Manager for Heterogeneous Cluster Systems (DWM: 이기종 클러스터 시스템의 동적 자원 관리자)

  • Park, Jong-Hyun;Kim, Jun-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.56-62
    • /
    • 2009
  • Inexpensive high performance computer systems combined with high speed networks and machine independent communication libraries have made cluster computing a viable option for parallel applications. In a heterogeneous cluster environment, efficient resource management is critically important since the computing power of the individual computer system is a significant performance factor when executing applications in parallel. This paper presents a dynamic task manager, called DWM (dynamic work manager). It makes a heterogeneous cluster system fully utilize the different computing power of its individual computer system. We measure the performance of DWM in a heterogeneous cluster environment with several kernel-level benchmark programs and their programming complexity quantitatively. From the experiments, we found that DWM provides competitive performance with a notable reduction in programming effort.

A Study on Distributed System Construction and Numerical Calculation Using Raspberry Pi

  • Ko, Young-ho;Heo, Gyu-Seong;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.194-199
    • /
    • 2019
  • As the performance of the system increases, more parallelized data is being processed than single processing of data. Today's cpu structure has been developed to leverage multicore, and hence data processing methods are being developed to enable parallel processing. In recent years desktop cpu has increased multicore, data is growing exponentially, and there is also a growing need for data processing as artificial intelligence develops. This neural network of artificial intelligence consists of a matrix, making it advantageous for parallel processing. This paper aims to speed up the processing of the system by using raspberrypi to implement the cluster building and parallel processing system against the backdrop of the foregoing discussion. Raspberrypi is a credit card-sized single computer made by the raspberrypi Foundation in England, developed for education in schools and developing countries. It is cheap and easy to get the information you need because many people use it. Distributed processing systems should be supported by programs that connected multiple computers in parallel and operate on a built-in system. RaspberryPi is connected to switchhub, each connected raspberrypi communicates using the internal network, and internally implements parallel processing using the Message Passing Interface (MPI). Parallel processing programs can be programmed in python and can also use C or Fortran. The system was tested for parallel processing as a result of multiplying the two-dimensional arrangement of 10000 size by 0.1. Tests have shown a reduction in computational time and that parallelism can be reduced to the maximum number of cores in the system. The systems in this paper are manufactured on a Linux-based single computer and are thought to require testing on systems in different environments.

Large Eddy Simulation for the Prediction of Unsteady Dispersion Behavior of Hydrogen Fluoride (불산의 비정상 확산거동 예측을 위한 대와동모사)

  • Ko, M.W.;Oh, Chang Bo;Han, Y.S.;Choi, B.I.;Do, K.H.;Kim, M.B.;Kim, T.H.
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • A Large Eddy Simulation(LES) was performed for the prediction of unsteady dispersion behavior of hydrogen fluoride (HF). The HF leakage accident occurred at the Gumi fourth industrial complex was numerically investigated using the Fire Dynamics Simulator (FDS) based on the LES. The accident area was modeled three-dimensionally and time-varying boundary conditions for wind were adopted in the simulation for considering the realistic accident conditions. The Message Passing Interface (MPI) parallel computation technique was used to reduce the computational time. As a result, it was found that the present LES simulation could predict the unsteady dispersion features of HF near the accident area effectively. The dispersion behaviors of the leaked HF was much affected by the unsteady wind direction. The LES could predict the time variation of the HF concentration reasonably and give an useful information for the risk analysis while the prediction with the time-averaging concept of HF concentration had a limitation for the amount of HF concentration at specific location point. It was identified that the LES is very useful to predict the dispersion characteristics of hazardous chemicals.

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF