• Title/Summary/Keyword: MPEG-4 AAC

Search Result 38, Processing Time 0.023 seconds

Implementation of the Audio CODEC for Digital Audio Broadcasting Service (디지털 오디오 방송 서비스를 위한 오디오 코덱의 구현)

  • 장대영;홍진우
    • Journal of Broadcast Engineering
    • /
    • v.6 no.1
    • /
    • pp.66-71
    • /
    • 2001
  • This paper Introduces an implementation of MPEG-2 AAC codec system for digital audio broadcasting. This system consists of the encoder and the decoder. This system includes MPEG-2 system multiplexing and demultiplexing modules for Interfacing to the ETRI-DAB system. Four DSPs are adopted for the encoder and three DSPs for 7he decoder. Each DSP Processes system control. 1/0 control, audio signal processing. multiplexing and demultiplexing. This Paper also discusses some near future estimations relaxed to the DAB system and it\`s services. Currently a stereo audio codec is available but multi-channel audio codec and MPEG-4 audio cosec wall be also Implemented.

  • PDF

MPEG-D USAC: Unified Speech and Audio Coding Technology (MPEG-D USAC: 통합 음성 오디오 부호화 기술)

  • Lee, Tae-Jin;Kang, Kyeong-Ok;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.589-598
    • /
    • 2009
  • As mobile devices become multi-functional, and converge into a single platform, there is a strong need for a codec that is able to provide consistent quality for speech and music content MPEG-D USAC standardization activities started at the 82nd MPEG meeting with a CfP and approved WD3 at the 88th MPEG meeting. MPEG-D USAC is converged technology of AMR-WB+ and HE-AAC V2. Specifically, USAC utilizes three core codecs (AAC ACELP and TCX) for low frequency regions, SBR for high frequency regions and the MPEG Surround tool for stereo information. USAC can provide consistent sound quality for both speech and music content and can be applied to various applications such as multi-media download to mobile device Digital radio Mobile TV and audio books.

Design on MPEC2 AAC Decoder

  • NOH, Jin Soo;Kang, Dongshik;RHEE, Kang Hyeon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1567-1570
    • /
    • 2002
  • This paper deals with FPGA(Field Programmable Gate Array) implementation of the AAC(Advanced Audio Coding) decoder. On modern computer culture, according to the high quality data is required in multimedia systems area such as CD, DAT(Digital Audio Tape) and modem. So, the technology of data compression far data transmission is necessity now. MPEG(Moving Picture Experts Group) would be a standard of those technology. MPEG-2 AAC is the availableness and ITU-R advanced coding scheme far high quality audio coding. This MPEG-2 AAC audio standard allows ITU-R 'indistinguishable' quality according to at data rates of 320 Kbit/sec for five full-bandwidth channel audio signals. The compression ratio is around a factor of 1.4 better compared to MPEG Layer-III, it gets the same quality at 70% of the titrate. In this paper, for a real time processing MPEG2 AAC decoding, it is implemented on FPGA chip. The architecture designed is composed of general DSP(Digital Signal Processor). And the Processor designed is coded using VHDL language. The verification is operated with the simulator of C language programmed and ECAD tool.

  • PDF

A Study on the MDCT Design for MPEG-2 Audio (MPEG-2 오디오를 위한 MDCT 설계에 관한 연구)

  • 김정태;구대성;이강현
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.97-100
    • /
    • 2000
  • The most important technology is the compression methods in the multimedia society. Audio files are rapidly propagated through internet. MP-3(MPEG-1 Layer3) is offered to CD tone quality in 128kbps, but 64kbps below tone-quality is abruptly down. On the other hand, MPEG-II AAC (Advanced Audio Coding) is not compatible with MPEG-I, but AAC has a high compression ratio 1.4 times better than MP-3 and it has max. 7.1 channel and 96KHz sampling rate. In this paper, we designed the optimized MDCT (Modified Discrete Cosine Transform) that could decrease the capacity of enormous computation and could increase the processing speed in the MPEG-2 AAC encoder.

  • PDF

Implementation of the TMS320C6701 DSP Board for Multichannel Audio Coding (멀티채널 오디오 부호화를 위한 TMS320C6701 DSP 보드 구현)

  • 장대영;홍진우;곽진석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.199-203
    • /
    • 1999
  • This paper is on the DSP system design and implementation for real time MPEG-2 AAC multichannel audio, and MPEG-4 object oriented audio coding. This DSP system employs two DSPs of the state of the art TMS320C6701, developed by TI semiconductor. DSP board has PCI interface for downloading application program and control the system. DSP board was designed to use for both encoder and decoder, by setting several switches. The system contains external input and output box also, for A/D and D/A conversion for eight channel audio. The input box converts multi channel digital audio to ADI format, that provides serial interface for eight channel digital audio. And the output box converts ADI format signal to multi channel audio. Through this ADI interface, DSP boards can be connected to input, output box. Implemented DSP system was tested for integration with MPEG-2 AAC encoder and decoder S/W. Currently the DSP system performs realtime AAC 4-channel audio encoding with two DSPs, and 8-channel decoding with one DSP.

  • PDF

An Optimization on the Psychoacoustic Model for MPEG-2 AAC Encoder (MPEG-2 AAC Encoder의 심리음향 모델 최적화)

  • Park, Jong-Tae;Moon, Kyu-Sung;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.2
    • /
    • pp.33-41
    • /
    • 2001
  • Currently, the compression is one of the most important technology in multimedia society. Audio files arc rapidly propagated throughout internet Among them, the most famous one is MP-3(MPEC-1 Laver3) which can obtain CD tone from 128Kbps, but tone quality is abruptly down below 64Kbps. MPEC-II AAC(Advanccd Audio Coding) is not compatible with MPEG 1, but it has high compression of 1.4 times than MP 3, has max. 7.1 and 96KHz sampling rate. In this paper, we propose an algorithm that decreased the capacity of AAC encoding computation but increased the processing speed by optimizing psychoacoustic model which has enormous amount of computation in MPEG 2 AAC encoder. The optimized psychoacoustic model algorithm was implemented by C++ language. The experiment shows that the psychoacoustic model carries out FFT(Fast Fourier Transform) computation of 3048 point with 44.1 KHz sampling rate for SMR(Signal to Masking Ratio), and each entropy value is inputted to the subband filters for the control of encoder block. The proposed psychoacoustic model is operated with high speed because of optimization of unpredictable value. Also, when we transform unpredictable value into a tonality index, the speed of operation process is increased by a tonality index optimized in high frequency range.

  • PDF

Development of an MPEG-4 AAC encoder of low implementation complexity (낮은 연산 부담을 갖는 MPEG-4 AAC 인코더 개발에 관한 연구)

  • 김병일;김동환;장태규;장흥엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2467-2470
    • /
    • 2003
  • This paper presents a new structure of MPEG-4 AAC encoder. The proposed encoder directly shapes quantization noise distribution according to the energy distribution curve and thereafter performs adjustment of the offset level of the noise distribution to meet the given bit rate. The direct noise shaping and the bit rate matching scheme of the proposed encoder algorithm significantly alleviate the problem of conventional encoder's processing burden related with the employment of the precise psychoacoustic model and iteration intensive quantizer. The encoder algorithm is implemented on ARM processor with fixed-feint arithmetic operations. The audio quality of the implemented system is observed comparable to those of commercially available encoders, white the complexity of the implementation is drastically reduced in comparison to the conventional encoder systems.

  • PDF

Analysis of MPEG Audio Coding Technology (MPEG 오디오 부호화 기술 분석)

  • 홍진우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.249-254
    • /
    • 1998
  • MPEG 오디오 그룹에서는 오디오 부호화 기술의 국제 표준으로 MPEG-1 오디오, MPEG-2 오디오 BC, MPEG-2 AAC의 규격 제정을 완료하였고, 현재 MPEG-4 오디오 및 MPEG-7 오디오의 국제 표준을 제정하고 있다. 본 논문에서는 이들 표준에 대한 요구 기능 및 기술 특징을 분석하고, 각각의 표준에 대한 응용분야와 향후의 계획에 대하여 기술한다.

  • PDF

Implementation of the AAC Audio CODEC for Digital Audio Broadcasting (디지털 오디오 방송을 위한 AAC 오디오 코덱 구현)

  • 장대영;홍진우
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2000.11b
    • /
    • pp.43-48
    • /
    • 2000
  • This paper introduces MPEG-2 AAC codec system fur digital audio broadcasting. This system consists of encoder and decoder, and this system provides MPEG-2 system multiplexing and demultiplexing functions. Four DSPs are adopted fur encoder and three DSPs fur decoder. Each DSP processes system control, I/O control, and audio signal processing, multiplexing and demultiplexing. This paper also discusses about some near future estimations related to DAB system and services. And at the end of this paper describes about future development plans.

  • PDF

An MPEG-2 AAC Encoder Chip Design Operating under 70MIPS (70MIPS 이내에서 동작하는 MPEG-2 AAC 부호화 칩 설계)

  • Kang Hee-Chul;Park Ju-Sung;Jung Kab-Ju;Park Jong-In;Choi Byung-Gab;Kim Tae-Hoon;Kim Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.61-68
    • /
    • 2005
  • A chip, which can fast encoder the audio data to AAC (Advanced Audio Coding) LC(Low Complexity) that is MPEG-2 audio standard, has been designed on the basis of a 32 bits DSP core and fabricated with 0.25um CMOS technology. At first, the various optimization methods for implementing the algerian are devised to reduce the memory size and calculation cycles. FFT(Fast Fourier Transform) hardware block is added to the DSP core to get the more reduction of the calculation cycles. The chips has the size of $7.20\times7.20 mm^2$ and about 830,000 equivalent gates, can carry out AAC encoding under 70MIPS(Million Instructions per Second).